√3x^2-√2x-3√3=0
Please solve and send solution
Answers
Solution:
√3x² - √2x - 3√3 = 0
Here , given equation is a quadratic equation
Finding the value of x using quadratic formula
x = - b ± √b² - 4ac/2a
Where,
- b : coefficient of x = -√2
- a : coefficient of x² = √3
- c : constant term = -3√3
→ x = - (-√2 )± √(-√2)² - 4(√3)(-3√3)/2(√3)
→ x = √2 ± √2 + 36/2√3
→ x = √2 ± √38/2√3
Taking common & substituting 2 = √2 × √2
→ x = √2 [ 1 ± √19 ]/( √2 ) ( √2 ) ( √3 )
→ x = [ 1 ± √19 ]/√2 ( √3 )
→ x = 1 + √19/√6 or 1 - √19/√6
Hence , x = 1 + √19/√6 or 1 - √19/√6
Given : √3x² - √2x - 3√3 = 0
To Find :
Solution:
ax² + bx + c = 0
roots = (-b ± √(b² - 4ac) )/2a
√3x² - √2x - 3√3 = 0
a = √3
b = - √2
c = -3√3
=> x = (- (- √2) ± √( (√2)² - 4√3 (-3√3) )/2√3
=> x = (√2 ±√38) )/2√3
=> x = (√2 ± √38 )/2√3
=> x = √2 (1 ± √19 )/2√3
=> x = (1 ± √19 )/√2√3
=> x = (1 ± √19 )/√6
x = (1 ± √19 )/√6
Learn More:
if alpha +beta are the roots of equation 4x²-5x+2=0 find the equation ...
https://brainly.in/question/8333453
Show that the roots of equation (xa)(xb) = abx^2; a,b belong R are ...
https://brainly.in/question/21009259