Math, asked by upadhyayapradhyaya37, 11 months ago

3x'2 + 5 / 2x'2 - 4 find derivatives of w.r.t x​

Answers

Answered by Swarup1998
3

Given data:

\quad y=3x^{2}+\dfrac{5}{2x^{2}}-4

To find:

\quad \dfrac{dy}{dx}

Step-by-step explanation:

Given, y=3x^{2}+\dfrac{5}{2x^{2}}-4

\Rightarrow y=3x^{2}+\dfrac{5}{2}x^{-2}-4

Now differentiating both sides with respect to x, we get

\quad \dfrac{d}{dx}(y)=\dfrac{d}{dx}(3x^{2}+\dfrac{5}{2}x^{-2}-4)

\Rightarrow \dfrac{dy}{dx}=\frac{d}{dx}(3x^{2})+\dfrac{d}{dx}(\dfrac{5}{2}x^{-2})-\dfrac{d}{dx}(0)

\Rightarrow \dfrac{dy}{dx}=3\dfrac{d}{dx}(x^{2})+\dfrac{5}{2}\dfrac{d}{dx}(x^{-2})-0

  • since \dfrac{d}{dx}(constant)=0

\Rightarrow \dfrac{dy}{dx}=3\times 2\times x^{2-1}+\dfrac{5}{2}\times (-2)\times x^{-2-1}

\Rightarrow \dfrac{dy}{dx}=6x-5x^{-3}

\Rightarrow \dfrac{dy}{dx}=6x-\dfrac{5}{x^{3}}

Answer:

The required derivative is 6x-\dfrac{5}{x^{3}}.

Answered by MaheswariS
6

\textbf{Given:}

\mathsf{\dfrac{3x^2+5}{2x^2-4}}

\textbf{To find:}

\textsf{Derivaive of the given function}

\textbf{Solution:}

\textsf{Let}\;\;\mathsf{y=\dfrac{3x^2+5}{2x^2-4}}

\textsf{We apply Quotient rule of differentiation}

\boxed{\mathsf{\dfrac{d(\frac{u}{v})}{dx}=\dfrac{v\,\frac{du}{dx}-u\,\frac{dv}{dx}}{v^2}}}

\textsf{Differentiate y with respect to 'x'}

\mathsf{\dfrac{dy}{dx}=\dfrac{(2x^2-4)\dfrac{d(3x^2+5)}{dx}-(3x^2+5)\dfrac{d(2x^2-4)}{dx}}{(2x^2-4)^2}}

\mathsf{\dfrac{dy}{dx}=\dfrac{(2x^2-4)(6x)-(3x^2+5)(4x)}{(2x^2-4)^2}}

\mathsf{\dfrac{dy}{dx}=\dfrac{12x^3-24x-12x^3-20x}{(2x^2-4)^2}}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{-44x}{(2x^2-4)^2}}}

\textbf{Find more:}

If y=e^2x (ax+b), then prove that d^2 y/dx^2 -4 dy/dx+4y=0

https://brainly.in/question/19674230

Similar questions