Math, asked by lnm, 11 months ago

3x^2-5x+2=0 by completing the square

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha=\frac{2}{3}}}}\\

\green{\tt{\therefore{\beta=1}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies 3 {x}^{2}  - 5x + 2 = 0 \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Value \: of \:  \alpha  \: and \:  \beta  = ?

• According to given question :

 \tt \circ \: Let \: zeroes \: be \:  \alpha  \: and \:  \beta  \\  \\  \tt \circ \: a = 3 \\  \\  \tt \circ \: b =  - 5 \\  \\  \tt \circ \: c = 2  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies 3 {x}^{2} - 5x + 2 = 0  \\  \\  \text{Both \: side \: dividing \: by \: coefficient \: of \: x}^{2}  \\  \tt:  \implies  {x}^{2}  -  \frac{5}{3}x +  \frac{2}{3}   = 0 \\  \\  \text{Both \: side \: adding}  \: (\frac{b}{2a})^{2}  \\  \\   \tt\circ \: ( \frac{b}{2a})  =  (\frac{ \frac{ - 5}{3} }{2 \times 1} )^{2}  =  \frac{25}{36}  \\  \\  \tt:  \implies  {x}^{2}  -  \frac{5}{3}x +  \frac{25}{36}  +  \frac{2}{3}  =  \frac{25}{36}  \\  \\  \tt:  \implies  (x  -  \frac{5}{6} )^{2}  =  \frac{25}{36}  -  \frac{2}{3}  \\  \\ \tt:  \implies  (x -  \frac{5}{6} )^{2}  =  \frac{25 - 24}{36}  \\  \\ \tt:  \implies  (x   -  \frac{5}{6} )^{2}  =  \frac{1}{36}  \\  \\ \tt:  \implies  (x  - \frac{5}{6} ) =  \sqrt{ \frac{1}{36} }  \\  \\ \tt:  \implies  (x  -  \frac{5}{6} )  =   \pm\frac{1}{6}  \\  \\ \tt:  \implies  x =  \pm \frac{1}{6}   +  \frac{5}{6}  \\  \\  \tt:  \implies x =  \frac{5}{6}  \pm \frac{1}{6} \\  \\   \green{\tt:   \implies x =   \frac{5 \pm1 }{6}}  \\  \\  \tt:  \implies  \alpha  =  \frac{5 - 1}{6}  \\  \\   \green{\tt:  \implies  \alpha  =  \frac{2}{3} } \\  \\  \tt:  \implies  \beta  =  \frac{5 + 1}{6}  \\  \\  \green{\tt:  \implies  \beta  =1}

Similar questions