Math, asked by emilly1973, 4 months ago

3x^2+6x+3=0 solve the equation using the quadratic formula

Answers

Answered by aviralkachhal007
1

Solution

3x² + 6x + 3 = 0

Comparimg the equation with ax² + bx + c = 0

we get,

a = 3 , b = 6 , c = 3

Discriminant = (b)² - 4ac = 0

➙ (6)² - 4(3)(3) = 0

➙ 36 - 36 = 0

➙ 0 = 0

∵ (b)² - 4ac = 0

∴ Two equal roots exist for the following equation.

Roots = \dfrac{-b}{2a}, \dfrac{-b}{2a}

= \dfrac{-6}{2×3}, \dfrac{-6}{2×3}

= (-1) , (-1)

Answered by Anonymous
9

Given Equation

  • 3x² + 6x + 3 = 0

Solution

  • In this question, quadratic formula is used.

⇛ Firstly we will find the discriminant (D)

\star{\boxed{\bf{\orange{D = b^2 - 4ac}}}}

Here,

  • a = 3
  • b = 6
  • c = 3

\tt\longrightarrow{D = (6)^2 - 4 \times 3 \times 3}

\tt\longrightarrow{D = 36 - 36}

\tt\longrightarrow{D = 0}

  • Now, we use the quadratic formula. That is

\star{\boxed{\bf{\orange{x = \dfrac{-b \pm \sqrt{D}}{2a}}}}}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{-(6) \pm \sqrt{0}}{2 \times 3}}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{-6 \pm 0}{6}}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{-6}{6}}

\mathcal:\implies\: \: \: \: \: \: \: \: {\underline{\boxed{\purple{x = -1}}}}

Hence,

  • The roots of the given equation are -1 and -1.

Anonymous: Outstanding (◕ᴗ◕✿)
Anonymous: Splendiferous!
Similar questions