Math, asked by khushiraniab, 9 months ago

3x+2/rootx=1,then x-rootx=?​

Answers

Answered by KINGYASH619
1

Answer:

3x+2 =1

To find :

Value of expression :

x - \sqrt{x}x− x

Solution :

The expression given in question is :

\frac{3x + 2}{ \sqrt{x} } = 1

x

3x+2

=1

(equation 1)

Multiplying both sides of equation 1 by square root of x,

we get

\frac{3x + 2}{ \sqrt{x} } \times \sqrt{x} = 1 \times \sqrt{x}

x

3x+2

×

x

=1×

x

this will become as,

3x + 2= \sqrt{x}3x+2=

x

(equation 2)

Squaring both sides of equation 2, we get

{(3x + 2)}^{2} = ( {\sqrt{x} } )^{2}(3x+2)

2

=(

x

)

2

so, it becomes,

{(3x + 2)}^{2} = x(3x+2)

2

=x

and

9 {x}^{2} + 12x + 4 = x9x

2

+12x+4=x

so,

9 {x}^{2} + 11x + 4 = 09x

2

+11x+4=0

On solving this equation,

the values of x :

\begin{gathered}(1) \\ x = \frac{( - 11 - \sqrt{ - 23)} }{18} = \frac{( - 11 - i \sqrt{23}) }{18} \\ and \\ (2) \\ x = \frac{( - 11 + \sqrt{ - 23)} }{18} = \frac{( - 11 + i \sqrt{23}) }{18}\end{gathered}

(1)

x=

18

(−11−

−23)

=

18

(−11−i

23

)

and

(2)

x=

18

(−11+

−23)

=

18

(−11+i

23

)

(equation 3)

From equation 2,

3x + 2 = √x

3x - √x = -2

so,

x - √x = -2x - 2 = -2(x + 1)

(equation 4)

So, on putting values of x from equation 3 in equation 4,

The value of given expression :

by (3.1)

- 2(\frac{( - 11 - i \sqrt{23}) }{18} + 1) = (\frac{ - 7 + i \sqrt{23} }{9} )−2(

18

(−11−i

23

)

+1)=(

9

−7+i

23

)

The value of given expression :by (3.2)

- 2(\frac{( - 11 + i \sqrt{23}) }{18} + 1) = (\frac{ - 7 - i \sqrt{23} }{9} )−2(

18

(−11+i

23

)

+1)=(

9

−7−i

23

)

So,

Values of x - √x are :

\begin{gathered}\\ \bf (\frac{ - 7 + i \sqrt{23} }{9} ) \\ and \\ \bf (\frac{ - 7 - i \sqrt{23} }{9} )\end{gathered}

(

9

−7+i

23

)

and

(

9

−7−i

23

)

Similar questions