Math, asked by satyam8910, 1 year ago

3x^2-x-2=0 by complete square method​

Answers

Answered by Queen222
3

D=9

Step-by-step explanation:

3x²-x-2=0

D= b²-4ac

D= 1²-4x1x-2

D=1+8

D=9

Answered by Amanutkarsh
3

 {3x}^{2}  - x - 2  = 0\\  \\  =  >  {( \sqrt{3}x )}^{2}   +  2( \sqrt{3}x )(  \frac{ - 1}{2 \sqrt{3} } ) +  { \large{(}} \frac{ - 1}{2 \sqrt{3} } )^{2}  -  ( \frac{ - 1}{2 \sqrt{3} } )^{2}  - 2 \\ \\   =  >  ( \sqrt{3 }x -  \frac{1}{2 \sqrt{3} }  )^{2}  -  \frac{1}{12}  - 2 \\  =  >  { \huge{( }}\sqrt{3}x -  \frac{1}{2 \sqrt{3} }  { \huge{)}}^{2}  - 1{ \huge{(}}\frac{1  +  24}{12} { \huge{)}} \\  \\  =  >  { \huge{( }}\sqrt{3}x -  \frac{1}{2 \sqrt{3} }  { \huge{)}}^{2} - 1( \frac{25}{12}) \\  \\  =  >   { \huge{( }}\sqrt{3}x -  \frac{1}{2 \sqrt{3} }  { \huge{)}}^{2} -  \frac{25}{12}  \\  \\  =  >  { \huge{( }}\sqrt{3}x -  \frac{1}{2 \sqrt{3} }  { \huge{)}}^{2} -  { \large{( }}\frac{5}{2 \sqrt{3} } { \large{)}}^{2}  \\  \\  =  > { \huge{( }}\sqrt{3}x -  \frac{1}{2 \sqrt{3} }  -  \frac{5}{2 \sqrt{3} }   { \huge{)}}{ \huge{(}} \sqrt{3} x -  \frac{1}{2 \sqrt{3} }  +   \frac{5}{2 \sqrt{3} } { \huge{)}} \\  \\  =  > { \huge{(}} \sqrt{3}x - 1( \frac{1}{2 \sqrt{3} } +  \frac{5}{2 \sqrt{3} }  ){ \huge{)}}{ \huge{(}} \sqrt{3}x +  \frac{ - 2 \sqrt{3} + 10 \sqrt{3}  }{2 \sqrt{3} }  { \huge{)}} \\  \\  =  > { \huge{(}} \sqrt{3} x -  \frac{11 \sqrt{3} }{2 \sqrt{3} } { \huge{)}}{ \huge{(}} \sqrt{3}x +  \frac{8 \sqrt{3} }{2 \sqrt{3} }  { \huge{)}} \\  \\  =  > ( \sqrt{3}x -  \frac{11}{2}  )( \sqrt{3} x +  \frac{8}{2} ) \\  \\  =  > ( \sqrt{3} x - 5.5)( \sqrt{3}x + 4 ) = 0 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:{ \boxed{x =  \frac{5.5}{ \sqrt{3} }  \:  \: or \:  \:  \frac{4}{ \sqrt{3} }}}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  > { \boxed{ \red{ \frac{5.5 \sqrt{3} }{9}  \:  \: or \frac{4 \sqrt{3} }{9} }}}

Similar questions