3x^2 + y^2 + 2z^2 + 3x + 4y + 4z= 0 represent ellipsoid. find its center and length of semi-axis
Answers
Answered by
1
Step-by-step explanation:
Equation of an ellipse is 3x
2
+4y
2
−6x+8y−5=0
∴3x
2
−6x+4y
2
+8y−5=0
⇒3x
2
−6x+3−3+4y
2
+8y+4−4−5=0
⇒3x
2
−6x+3+4y
2
+8y+4−12=0
⇒3(x
2
−2x+1)+4(y
2
+2y+1)−12=0
⇒3(x
2
−2x+1)+4(y
2
+2y+1)=12
⇒
4
(x
2
−2x+1)
+
3
(y
2
+2y+1)
=1
⇒
4
(x−1)
2
+
3
(y+1)
2
=1
Comparing it with ⇒
a
2
(x−h)
2
+
b
2
(y−k)
2
=1
We get,
h=1,y=−1,a=2,b=
3
So center of ellipse is (1,−1),
For eccentricity e,
e=
1−
a
2
b
2
e=
1−
4
3
∴e=
2
1
Similar questions