Math, asked by kullaaspooorti, 4 months ago

3x-20/x*2+3x-10 resolve into partial fractions

Answers

Answered by itzpriya22
9

\underline{\textsf{Given:}}

\mathsf{\dfrac{3x-20}{x^2+3x-10}}

\underline{\textsf{To find:}}

\mathsf{Resolve\;\dfrac{3x-20}{x^2+3x-10}\;into\;partial\;fractions}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{3x-20}{x^2+3x-10}}

\textsf{Factorize the denominator}

\mathsf{=\dfrac{3x-20}{(x+5)(x-2)}}

\textsf{Since the factors of the denominator are different, we can write}

\mathsf{\dfrac{3x-20}{(x+5)(x-2)}=\dfrac{A}{x+5}+\dfrac{B}{x-2}}

\implies\mathsf{\dfrac{3x-20}{(x+5)(x-2)}=\dfrac{A(x-2)+B(x+5)}{(x+5)(x-2)}}

\implies\mathsf{3x-20=A(x-2)+B(x+5)}.....(1)

\mathsf{Put\;x=2\;in\;(1)}

\mathsf{3(2)-20=A(2-2)+B(2+5)}

\mathsf{6-20=B(7)}

\mathsf{-14=B(7)}

\implies\boxed{\mathsf{B=-2}}

\mathsf{Put\;x=-5\;in\;(1)}

\mathsf{3(-5)-20=A(-5-2)+B(-5+5)}

\mathsf{-15-20=A(-7)}

\mathsf{-35=A(-7)}

\implies\boxed{\mathsf{A=5}}

\therefore\boxed{\boxed{\mathsf{\dfrac{3x-20}{x^2+3x-10}=\dfrac{5}{x+5}+\dfrac{-2}{x-2}}}}

Similar questions