English, asked by shivamsharnesh, 5 months ago

3x+25-x=5x+12 solve the following​

Answers

Answered by Anonymous
3

Answer:

3x+25-x=5x+12

3x-x -5x = 12-25

-3x = -13

x =  \frac{ \cancel - 13}{ \cancel- 3}

x= 13/3

Answered by spacelover123
8

Let's solve your equation step-by-step.

3x + 25 - x = 5x + 12

Step 1: Combine like terms and solve in the LHS.

⇒ 3x + 25 - x = 5x + 12

⇒ 3x - x + 25 = 5x + 12

⇒ 2x + 25 = 5x + 12

Step 2: Subtract 2x from both sides of the equation.

⇒ 2x + 25 - 2x = 5x + 12 - 2x

⇒ 2x - 2x + 25 = 5x - 2x + 12

⇒ 25 = 3x + 12

Step 3: Flip the equation.

⇒ 25 = 3x + 12

⇒ 3x + 12 = 25

Step 4: Subtract 12 from both sides of the equation.

⇒ 3x + 12 - 12 = 25 - 12

⇒ 3x = 13

Step 5: Divide 3 from both sides of the equation.

\dfrac{3x}{3} =\dfrac{13}{3}

x = \dfrac{13}{3}

______________________________

Verification for the value of 'x'

⇒ 3x + 25 - x = 5x + 12

3(\dfrac{13}{3})  + 25 - \dfrac{13}{3}  = 5(\dfrac{13}{3})  + 12

13 + 25 - \dfrac{13}{3} = \dfrac{65}{3} + 12

\dfrac{13\times 3}{1\times 3}  + \dfrac{25\times 3 }{1\times 3}  - \dfrac{13}{3} = \dfrac{65}{3} + \dfrac{12\times 3}{1\times 3}

\dfrac{39}{3}  + \dfrac{75 }{3}  - \dfrac{13}{3} = \dfrac{65}{3} + \dfrac{36}{3}

\dfrac{114}{3} - \dfrac{13}{3} =  \dfrac{101}{3}

\dfrac{101}{3}  =  \dfrac{101}{3}

∴ LHS = RHS

\bf \therefore x = \frac{13}{3 }  \ in \ the \ equation \ \rightarrow\  3x + 25-x=5x+12

______________________________

Similar questions