Math, asked by soni8030, 1 year ago

3x+2y=11;2x+3y=4 substitution​

Answers

Answered by DevyaniKhushi
1

3x + 2y = 11 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  -  -  -(i)  \\ 2x + 3y = 4\:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  -  -  -(ii)

From \:  \: equation \: (i), \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x  =  \frac{11 - 2y}{3} \:  \:  \:  \:  \:  \:  \:  \:  -  -  - (iii)

Now,

{ \text{Putting \:equation\:(iii)\: in \:equation\:(ii),\:we\:get, }}

2( \frac{11 - 2y}{3}) + 3y = 4 \\  \\  \frac{22 - 4y}{3}  + 3y = 4 \\  \\  \frac{22 - 4y + 9y}{3}  = 4 \\  \\ 22 + 5y = 12 \\ 5y = 12 - 22 \\ 5y =  - 10 \\ { \red{{y =  \frac{ - 10}{5}  = 2}}}

Again,

{ \text{Putting value of y in equation (iii), we get,}}

x =  \frac{11 - 2y}{3}  \\  \\ \:  \:   =  \frac{11 - 2( - 2)}{3}  \\  \\  \:  \:  =  \frac{11 + 4}{3}  =  { \red{\frac{15}{3}  = {5}}}

Therefore,

{ \text {\huge{ \red{Value of x is 5  \& Value of y is -2}}}}

Answered by Anonymous
0

Answer:

Step-by-step explanation:

Attachments:
Similar questions