Math, asked by adithiya31, 9 months ago

3x + 2y = 24, x + 3y = 3, solve using elimination method​

Answers

Answered by mirakrishnabaskar
0

Ans :-

x= -15/7

y = 57

__________________

Answered by sp6559568
1

 \mathbf  \orange{Question}

3x + 2y = 24, x + 3y = 3, solve using elimination method

 \mathbf \orange{</u></em></strong><strong><em><u>A</u></em></strong><strong><em><u>nswer}

 \mathbf {system \: of \: linear \: equation \: entered}

1 \:  \: 3x + 2y = 24

2 \:  \: x + 3y = 3

 \mathbf{graphic \: representation \: of \: equation}

refer to the above attachment...

⠀⠀ ⠀ ⠀⠀⠀ ⠀⠀⠀ ⠀ ⠀⠀⠀ ⠀⠀⠀ ⠀ ⠀⠀⠀ ⠀⠀⠀ ⠀ ⠀⠀⠀ ⠀ \large \mathbb{</u></em></strong><strong><em><u>Main </u></em></strong><strong><em><u>Solution</u></em></strong><strong><em><u>:</u></em></strong><strong><em><u>-</u></em></strong><strong><em><u>}

3x + 2y = 24</u></em></strong><strong><em><u>{</u></em></strong><strong><em><u>x1</u></em></strong><strong><em><u>

x  + 3y = 3</u></em></strong><strong><em><u>{</u></em></strong><strong><em><u>x3</u></em></strong><strong><em><u>

3x + 2y = 24   \:  \:  \:  \:  \:  \:  \:  \:

3x + 3y = 3

 -  \:  \:  \:  -  \:  \:  \:  \:  \:  -

_________________

 - 7 = 15

y =  \frac{ - 15}{7}

x + 3y = 3

x + 3y \frac{( - 15)}{7}  = 3

x = 3 +  \frac{45}{7}

x =  \frac{21 + 45}{7}

x =  \frac{66}{7 }  \: ans

 \mathbf{hope \: it \: helps \: u}

Attachments:
Similar questions