Math, asked by rajchoudhary95, 1 year ago

3x+2y +25 =0and 2x+y+10=0 by unique method​

Answers

Answered by AbhijithPrakash
13

Answer:

3x+2y+25=0,\:2x+y+10=0\quad :\quad x=5,\:y=-20

Step-by-step explanation:

Let's Solve this Question using Gaussian elimination:

\begin{bmatrix}3x+2y+25=0\\ 2x+y+10=0\end{bmatrix}

\blue{\mathrm{Isolate\:solutions}}

\gray{\mathrm{Isolate\:solution}:\quad 3x+2y+25=0}

3x+2y=-25

\gray{\mathrm{Isolate\:solution}:\quad 2x+y+10=0}

2x+y=-10

\begin{bmatrix}3x+2y=-25\\ 2x+y=-10\end{bmatrix}

\gray{\mathrm{Write\:a\:matrix\:with\:the\:coefficients\:and\:solutions}}

\begin{bmatrix}3&2&\gray{|}&-25\\ 2&1&\gray{|}&-10\end{bmatrix}

\blue{\mathrm{Reduce\:matrix\:to\:reduced\:row\:echelon\:form}\:\begin{pmatrix}1\:&\:\cdots \:&\:b\:\\ 0\:&\ddots \:&\:\vdots \\ 0\:&\:0\:&\:1\end{pmatrix}}

\begin{pmatrix}3&2&-25\\ 2&1&-10\end{pmatrix}

\green{\mathrm{Reduce\:matrix\:to\:row\:echelon\:form}\:\begin{pmatrix}a&\cdots &b\\ 0&\ddots &\vdots \\ 0&0&c\end{pmatrix}}

\gray{\mathrm{Cancel\:leading\:coefficient\:in\:row\:}\:R_2\:\mathrm{\:by\:performing}\:R_2\:\leftarrow \:R_2-\frac{2}{3}\cdot \:R_1}

\displaystyle=\begin{pmatrix}3&2&-25\\ 0&-\displaystyle\frac{1}{3}&\displaystyle\frac{20}{3}\end{pmatrix}

\blue{\mathrm{Reduce\:matrix\:to\:reduced\:row\:echelon\:form}\:\begin{pmatrix}1\:&\:\cdots \:&\:b\:\\ 0\:&\ddots \:&\:\vdots \\ 0\:&\:0\:&\:1\end{pmatrix}}

\gray{\mathrm{Multiply\:matrix\:row\:by\:constant:}\:R_2\:\leftarrow \:-3\cdot \:R_2}

=\begin{pmatrix}3&2&-25\\ 0&1&-20\end{pmatrix}

\gray{\mathrm{Cancel\:leading\:coefficient\:in\:row\:}\:R_1\:\mathrm{\:by\:performing}\:R_1\:\leftarrow \:R_1-2\cdot \:R_2}

=\begin{pmatrix}3&0&15\\ 0&1&-20\end{pmatrix}

\displaystyle\gray{\mathrm{Multiply\:matrix\:row\:by\:constant:}\:R_1\:\leftarrow \frac{1}{3}\cdot \:R_1}

=\begin{pmatrix}1&0&5\\ 0&1&-20\end{pmatrix}

\begin{bmatrix}1&0&\gray{|}&5\\ 0&1&\gray{|}&-20\end{bmatrix}

\gray{\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}}

x=5,\:y=-20

There are many methods, by which you can solve this question. Let's see another way of solving this question:

That is using the Cramer's rule:

\begin{bmatrix}3x+2y+25=0\\ 2x+y+10=0\end{bmatrix}

\gray{\mathrm{Isolate\:solutions}}

\begin{bmatrix}3x+2y=-25\\ 2x+y=-10\end{bmatrix}

\gray{\mathrm{Matrix\:of\:Coefficients}}

M=\begin{pmatrix}3&2\\ 2&1\end{pmatrix}

\gray{\mathrm{Answers\:column:}}

\begin{pmatrix}-25\\ -10\end{pmatrix}

\gray{\mathrm{Replace\:the\:}x\mathrm{-column\:values\:with\:the\:answer-column\:values}}

M_x=\begin{pmatrix}-25&2\\ -10&1\end{pmatrix}

\gray{\mathrm{Replace\:the\:}y\mathrm{-column\:values\:with\:the\:answer-column\:values}}

M_y=\begin{pmatrix}3&-25\\ 2&-10\end{pmatrix}

\blue{D=-1}

\blue{D_x=-5}

\blue{D_y=20}

\gray{\mathrm{Solve\:by\:using\:Cramer\:Rule}}

\displaystyle\gray{x=\frac{D_x}{D},\:y=\frac{D_y}{D},\:z=\frac{D_z}{D}}

\gray{D\:\mathrm{denotes\:the\:determinant}}

\displaystyle x=\frac{D_x}{D}=\frac{-5}{-1}

\gray{\mathrm{Simplify}}

x=5

\displaystyle y=\frac{D_y}{D}=\frac{20}{-1}

\gray{\mathrm{Simplify}}

y=-20

\gray{\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}}

x=5,\:y=-20

Attachments:

Equestriadash: Woah! Amazing!
AbhijithPrakash: ^_^"
AbhijithPrakash: Thanks...!!! :)
Anonymous: Well done!
AbhijithPrakash: :)
AbhijithPrakash: Thanks..!! :)
CaptainBrainly: ✌️
CaptainBrainly: Great !
AbhijithPrakash: ^^
Similar questions