Math, asked by genuineproducts14, 5 months ago

(3x-2y)^3+(2y-4z)^3+(4z-3x)^3
Solve using identities. Please help​

Answers

Answered by BrainlyProgrammer
11

Solution:-

Let

3x-2y=a

2y-4z=b

4z-3x=c

We know, if a+b+c=0 then a³+b³+c³=3abc

Here,

3x-2y +2y-4z+4z-3x=0

Therefore,

(3x-2y)³+(2y-4z)³+(4z-3x)³=3(3x-2y)(2y-4z)(4z-3x)

On calculating ....we get....

=3(12xy²-48xz²-18yx²+32yz²+36zx²-16zy²)

=36xy²-144xz²-54yx²+96yz²+108zx²-48zy². =>Correct Answer

\begin{gathered}\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}\end{gathered}

•Please see this answer from the website

Answered by Anonymous
1

Question=(3x-2y)^3+(2y-4z)^3+(4z-3x)^3

Solution:

(3x-2y)3 + (2y-4z)3 + (4z-3x)3

Attachments:
Similar questions