Math, asked by sspal6885, 1 day ago

3x-2y=5 and 2x/3+y/2 = -7/9

Answers

Answered by varadad25
3

Answer:

\displaystyle{\boxed{\red{\sf\:(\:x\:,\:y\:)\:=\:\left(\:\dfrac{1}{3}\:,\:-\:2\:\right)\:}}}

Step-by-step-explanation:

The given simultaneous equations are

\displaystyle{\sf\:3x\:-\:2y\:=\:5\:\qquad\cdots\:(\:1\:)}

\displaystyle{\sf\:\dfrac{2x}{3}\:+\:\dfrac{y}{2}\:=\:-\:\dfrac{7}{9}\:\qquad\cdots\:(\:2\:)}

Now,

\displaystyle{\sf\:\dfrac{2x}{3}\:+\:\dfrac{y}{2}\:=\:-\:\dfrac{7}{9}\:\qquad\cdots\:(\:2\:)}

\displaystyle{\implies\sf\:\dfrac{4x\:+\:3y}{6}\:=\:-\:\dfrac{7}{9}}

\displaystyle{\implies\sf\:4x\:+\:3y\:=\:\dfrac{-\:7\:\times\:\cancel{6}}{\cancel{9}}}

\displaystyle{\implies\sf\:4x\:+\:3y\:=\:\dfrac{-\:7\:\times\:2}{3}}

\displaystyle{\implies\sf\:4x\:+\:3y\:=\:\dfrac{-\:14}{3}}

\displaystyle{\implies\sf\:4x\:=\:\dfrac{-\:14}{3}\:-\:3y}

\displaystyle{\implies\sf\:4x\:=\:\dfrac{-\:14\:-\:9y}{3}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{-\:14\:-\:9y}{3}\:\times\:\dfrac{1}{4}}

\displaystyle{\implies\:\boxed{\sf\:x\:=\:\dfrac{-\:14\:-\:9y}{3\:\times\:4}}\sf\:\qquad\cdots\:(\:3\:)}

By substituting this value of x in equation ( 1 ), we get,

\displaystyle{\sf\:3x\:-\:2y\:=\:5\:\qquad\cdots\:(\:1\:)}

\displaystyle{\implies\sf\:3\:\left(\:\dfrac{-\:14\:-\:9y}{3\:\times\:4}\:\right)\:-\:2y\:=\:5}

\displaystyle{\implies\sf\:\cancel{3}\:\times\:\dfrac{-\:14\:-\:9y}{\cancel{3}\:\times\:4}\:-\:2y\:=\:5}

\displaystyle{\implies\sf\:\dfrac{-\:14\:-\:9y}{4}\:-\:2y\:=\:5}

\displaystyle{\implies\sf\:\dfrac{-\:14\:-\:9y\:-\:8y}{4}\:=\:5}

\displaystyle{\implies\sf\:-\:14\:-\:9y\:-\:8y\:=\:5\:\times\:4}

\displaystyle{\implies\sf\:-\:17y\:-\:14\:=\:20}

\displaystyle{\implies\sf\:-\:17y\:=\:20\:+\:14}

\displaystyle{\implies\sf\:-\:17y\:=\:34}

\displaystyle{\implies\sf\:\sf\:y\:=\:-\:\cancel{\dfrac{34}{17}}\:}

\displaystyle{\implies\sf\:\boxed{\pink{\sf\:y\:=\:-\:2\:}}}

By substituting this value of y in equation ( 3 ), we get,

\displaystyle{\sf\:x\:=\:\dfrac{-\:14\:-\:9y}{3\:\times\:4}\sf\:\qquad\cdots\:(\:3\:)}

\displaystyle{\implies\sf\:x\:=\:\dfrac{-\:14\:-\:9\:(\:-\:2\:)}{3\:\times\:4}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{-\:14\:+\:18}{12}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{\cancel{4}}{\cancel{12}}}

\displaystyle{\implies\:\boxed{\blue{\sf\:x\:=\:\dfrac{1}{3}\:}}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:(\:x\:,\:y\:)\:=\:\left(\:\dfrac{1}{3}\:,\:-\:2\:\right)\:}}}}

Similar questions