Math, asked by tiwaririya632, 4 months ago

(3x-3)/(x+1)+(x+1)/(x-1)+3/1 =(2x-1)/(2x+1)
prove that LHS is equal to RHS​

Answers

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \:  \circ \underline {\boxed{ \bf{given \:}}}

LHS:

 \:   \to\bf{ \frac{3x - 3}{x + 1}  +  \frac{x + 1}{x - 1}  +  \frac{3}{1} }

RHS:

 \:  \to \boxed{ \bf{ \frac{2x - 1}{2x + 1} }}

 \divideontimes  \displaystyle \sf{to \: verify \to \: lhs = rhs}

 \:  \bullet \underline{ \boxed{ \bf{solution}}}

LHS:

 \:  \implies\displaystyle \tt{ \frac{3x - 3}{x + 1}  +  \frac{x + 1}{x - 1}  +  \frac{3}{1} }

 \:  \implies \displaystyle \tt{by \: cross \: multiplication}

 \:  \implies \displaystyle \tt{ \frac{3x(x - 1) - 3(x - 1) + x(x + 1) + 1(x + 1)}{x(x - 1) + 1(x - 1) }} + \frac{3}{1}

 \:  \implies \\  \displaystyle \tt{ \frac{3 {x}^{2} - 3x - 3x + 3 +  {x}^{2}  + x + x +  1  }{ {x}^{2}  - x + x - 1}  +  \frac{3}{1} }

 \implies \displaystyle \tt{ \frac{ {3x}^{2}   - 6x + 3 +  {x}^{2} + 2x + 1 }{ {x}^{2} - 1 }  +  \frac{3}{1} }

 \implies \displaystyle \tt{  \frac{ {4x}^{2}  - 4x + 4}{ {x}^{2} - 1 }  +  \frac{3}{1} }

 \:  \implies \displaystyle \tt{  \frac{4( {x}^{2} - x + 1) }{ {x}^{2}  - 1}  +  \frac{3}{1} }

 \:  \implies \displaystyle \tt{ \frac{4 {x}^{2}  - 4x + 4}{3 {x}^{2}  - 3} }

 \implies \displaystyle \tt{ \frac{4( {x}^{2}  -  x + 1) }{3( {x}^{2} - 1)} }

 \:   \implies \displaystyle \tt{ \frac{4( {x}^{2} - x + 1) }{3( {x}^{2} - 1) } }

 \:  \implies \displaystyle \tt{ \frac{4(x(x - 1) + 1)}{3(x - 1)(x + 1)} }

 \:  \:  \implies \displaystyle \tt{ \frac{4(x + 1)(x - 1)}{3(x - 1)(x + 1)} }

 \:  \:  \implies \displaystyle \tt{\cancel \frac{(x + 1)(x - 1)}{(x + 1)(x - 1)}  \frac{4}{3} }

 \:  \implies \displaystyle \tt{lhs =  \frac{4}{3} }

 \:  \:  \implies \displaystyle \tt{rhs =  \frac{2x  -  1}{2x  +  1} }

 \:   \dashrightarrow \displaystyle \bf{lhs = rhs}

 \:  \:  \implies \displaystyle \tt{ \frac{4}{3}  =  \frac{2x - 1}{2x + 1} }

 \:  \implies \displaystyle \tt{4(2x + 1) = 3(2x - 1)}

 \:  \implies \displaystyle \tt{8x + 4 = 6x - 3}

 \implies \displaystyle \tt{8x + 4 - 6x + 3 = 0}

 \:  \implies \displaystyle \tt{2x + 7 = 0}

 \implies \displaystyle \tt{x =  \frac{ - 7}{2} }

Similar questions