Math, asked by 20201705, 2 months ago

(3x-4)3/2 by applying chain rule find derivative..???​

Answers

Answered by orangesquirrel
0

The derivative of (3x-4)^{\frac{3}{2} } is \frac{9}{2}\sqrt{3x-4}.

Given:

(3x-4)^{\frac{3}{2} }

To Find:

The derivative of (3x-4)^{\frac{3}{2} }  =?

Solution:

(3x-4)^{\frac{3}{2} }

Let u = 3x - 4 and

y = (3x-4)^{\frac{3}{2} }

So, y = u^{\frac{3}{2} }

\frac{dy}{dx}= \frac{dy}{du} *\frac{du}{dx} ---------------(1)

\frac{dy}{du}= \frac{du^{\frac{3}{2}} }{du}

\frac{dy}{du}= \frac{3}{2} u^{(\frac{3}{2}-1)}

\frac{dy}{du}= \frac{3}{2} u^{\frac{1}{2}} ---------------(2)

\frac{du}{dx}=\frac{d(3x -4)}{dx}

\frac{du}{dx}=\frac{d3x}{dx} -\frac{d4}{dx}

\frac{du}{dx}=3 -------------------(3)

Putting the values of equations (2) and (3) in equation (1), we get

\frac{dy}{dx}= \frac{3}{2} u^{\frac{1}{2}}*3

\frac{dy}{dx}= \frac{9}{2} (3x-4)^{\frac{1}{2}}

\frac{dy}{dx}= \frac{9}{2} \sqrt{3x-4}

The derivative of (3x-4)^{\frac{3}{2} } is \frac{9}{2}\sqrt{3x-4}.

#SPJ1

Similar questions