Math, asked by megola2350, 29 days ago

3x-4/y=1 , 2x-3/y=2. find it by elimination method​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given pair of equations is

\rm :\longmapsto\:3x - \dfrac{4}{y} = 1 -  -  - (1)

and

\rm :\longmapsto\:2x - \dfrac{3}{y} = 2 -  -  - (2)

On multiply equation (1) by 2 and equation (2) by 3, we get

\rm :\longmapsto\:6x - \dfrac{8}{y} = 2 -  -  - (3)

and

\rm :\longmapsto\:6x - \dfrac{9}{y} = 6 -  -  - (4)

On Subtracting equation (4) from equation (3), we get

\rm :\longmapsto\:\dfrac{1}{y} =  - 4

\bf\implies \:\boxed{ \tt{ \: y \:  =  \:  -  \:  \frac{1}{4}  \: }}

On substituting y = - 1/4, in equation (1), we get

\rm :\longmapsto\:3x - 4( - 4) = 1

\rm :\longmapsto\:3x + 16 = 1

\rm :\longmapsto\:3x  = 1 - 16

\rm :\longmapsto\:3x  =  - 15

\bf\implies \:\boxed{ \tt{ \: x \:  =  \:  -  \:  5  \: }}

Verification :-

Consider equation (1),

\rm :\longmapsto\:3x - \dfrac{4}{y} = 1

On substituting the values of x and y, we get

\rm :\longmapsto\:3( - 5) - 4( - 4) = 1

\rm :\longmapsto\: - 15 + 16= 1

\bf\implies \:1 = 1

Hence, Verified

Consider Equation (2)

\rm :\longmapsto\:2x - \dfrac{3}{y} = 2

On substituting the values of x and y, we get

\rm :\longmapsto\:2( - 5) - 3( - 4) = 1

\rm :\longmapsto\: -10+ 12 = 2

\bf\implies \:2 = 2

Hence, Verified

Answered by swanhayden7
0

Answer:

By hit and trial method

x =  - 5

y =  -  \frac{1}{4}

Similar questions