Math, asked by sahab98, 1 year ago

3x = 4y = 12z, prove that: z = xy/x+y

Answers

Answered by khushi7026
28
answer
hope it helps...
Attachments:

sahab98: thks
Answered by payalchatterje
3

Correct question is

If  {3}^{x}  =  {4}^{y}  =  {12}^{z} then prove that z =  \frac{xy}{x + y}

Answer:

Given,

 {3}^{x}  =  {4}^{y}  =  {12}^{z}

Let,

 {3}^{x}  =  {4}^{y}  =  {12}^{z}  = k

where k is constant.

Now,

 {3}^{x}  = k \\ {3}^{ {x}^{ \frac{1}{x} } } =  {k}^{ \frac{1}{x} } \\   {3}^{x \times  \frac{1}{x} }   =  {k}^{ \frac{1}{x} }  \\   3 =  {k}^{ \frac{1}{x} }

and

 {4}^{y}  = k \\  {4}^{ {y}^{ \frac{1}{y} } }  =  {k}^{ \frac{1}{y} }   \\ {4}^{y \times  \frac{1}{y} }  =  {k}^{ \frac{1}{y} }  \\ 4 =  {k}^{ \frac{1}{y} }

and

 {12}^{z}  = k \\  {12}^{ {z}^{ \frac{1}{z} } }  =  {k}^{ \frac{1}{z} }  \\  {12}^{z \times  \frac{1}{z} }  =  {k}^{ \frac{1}{z} }  \\  12 =  {k}^{ \frac{1}{z} }

We know,

12 = 3 \times 4 \\  {k}^{ \frac{1}{z} } =  {k}^{ \frac{1}{x} }   \times  {k}^{ \frac{1}{y} }  \\  {k}^{ \frac{1}{z} }  =  {k}^{ \frac{1}{x} +  \frac{1}{y}  }  \\  \frac{1}{z}  =  \frac{1}{x}  +  \frac{1}{y}  \\  \frac{1}{z}  =  \frac{x + y}{xy }  \\ z =  \frac{xy}{x + y}

[proved]

Here applied formulas are

 {a}^{  {b}^{ \frac{1}{b} }  }  =  {a}^{b \times  \frac{1}{b} }  =  {a}^{1}  = a

if \:  {a}^{p}  =  {a}^{q}   \: then \:  p = q

Similar questions