3x+4y=25, 5x-6y=9 solve by substitute methode
Answers
Step-by-step explanation:
Given -
3x + 4y = 25
5x - 6y = 9
To Find -
Value of x and y by substitution method.
Now,
= 3x + 4y = 25
= 3x = 25 - 4y
- = x = 25 - 4y/3
Substituting the value of x on
5x - 6y = 9
= 5(25 - 4y/3) - 6y = 9
= 125 - 20y/3 - 6y = 9
= 125 - 20y - 18y/3 = 9
= 125 - 38y/3 = 9
= 125 - 38y = 27
= 125 - 27 = 38y
= 98 = 38y
= y = 98/38
- = y = 49/19
Now,
Substituting the value of y on
3x + 4y =25
= 3x + 4(49/19) = 25
= 3x + 196/19 = 25
= 57x + 196/19 = 25
= 57x + 196 = 25 × 19
= 57x + 196 = 475
= 57x = 475 - 196
= 57x = 279
= x = 279/57
= x = 93/19
Hence,
The value of x is 93/19
and
The value of y is 49/19
Verification -
Substituting the value of x and y on 3x + 4y = 25
= 3(93/19) + 4(49/19) = 25
= 279/19 + 196/19 = 25
= 279 + 196/19 = 25
= 475/19 = 25
= 25 = 25
LHS = RHS
Hence,
Verified..
x = 93/19
y = 49/19
- 3x + 4y = 25
- 5x - 6y = 9
- Value of x and y.
3x + 4y = 25
3x = 25 - 4y
x = 25 - 4y/3
5x - 6y = 9
5(25 - 4y/3) - 6y = 9
125 - 20y - 18y/3 = 9
125 - 38y/3 = 9
125 - 38 = 27
125 - 27 = 38y
98 = 38y
y = 98/38
3x + 4(49/19) = 25
3x + 196/19 = 25
57x + 196/19 = 25
57x + 196 = 25 × 19
57x = 475 - 196
57x = 279
57x = 279/57
x = 93/19