Math, asked by rajputnaveen2761, 3 months ago

(3x+4y)(3x-8y) solve by using suitable identities.​

Answers

Answered by Anonymous
52

QuesTion :-

( 3x + 4y ) ( 3x - 4y )

Solve by using suitable identities.

 \\

SoluTion :-

\sf \blue{ ( a + b ) ( a - b ) = (a)² - ( b ) ²}

☘ ( 3x + 4y ) ( 3x - 4y ) = ( 3x )² - ( 4y )²

☘ 9x² - 16y²

 \\

KnOw MoRe :-

\sf \green {(a+b)²=(a²)+(b)²+2ab}

\sf \red {(a-b)²=(a)²+(b)²-2ab}

\sf \color{gray}{ (x+a)(x+b)= x²+(a+b)x+ab}

 \\

_____________________

✿ Hope it helps you :)

Answered by Anonymous
8

Answer :

  • (3x +4y) (3x - 8y) = 9x² - 3xy² - 12xy

Given :

  • (3x + 4y) (3x - 8y)

Solution :

↝ (3x + 4y) (3x - 8y)

↝ 3x(3x - 8y) + 4y (3x - 8y)

↝ 9x² - 24xy + 12xy - 32y²

↝ 9x² - 32y² - 12xy

Hence , (3x +4y) (3x - 8y) = 9x² - 3xy² - 12xy

(a + b) (a - b) = a² - b²

More Explanation:

  • (a + b) ² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b) (a - b)
  • (x + a) (x + b) = x² + (a + b) x + ab
  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Similar questions