Math, asked by ms7623342, 6 days ago

(3x-4y)^4 - x^4 Factorise It.​

Answers

Answered by bagkakali
0

Answer:

(3x-4y)^4-x^4

={3x-4y)^2}^2-(x^2)^2

={(3x-4y)^2+x^2}{(3x-4y)^2-x^2}

=(9x^2+16y^2-24xy+x^2)(9x^2+16y^2-24xy-x^2)

=(10x^2+16y^2-24xy)(8x^2+16y^2-24xy)

Answered by Anonymous
1

Answer:

[tex](3x−4y)2−x4

⇒[(3x−4y)2]2−(x2)2

⇒[(3x−4y)2−x2][(3x−4y)2+x2]

⇒[(3x−4y)+x][3x−4y−x][(3x−4y)2+x2]

⇒(4x−4y)(2x−4y)[(3x−4y)2+x2]

⇒8(x−y)(x−2y)[9x2+16y2−24xy+x2]

⇒16(x−y)(x−2y)[5x2+8y2−12xy]

[/t

Answered by Anonymous
2

Answer:

[tex](3x−4y)2−x4

⇒[(3x−4y)2]2−(x2)2

⇒[(3x−4y)2−x2][(3x−4y)2+x2]

⇒[(3x−4y)+x][3x−4y−x][(3x−4y)2+x2]

⇒(4x−4y)(2x−4y)[(3x−4y)2+x2]

⇒8(x−y)(x−2y)[9x2+16y2−24xy+x2]

⇒16(x−y)(x−2y)[5x2+8y2−12xy]

Similar questions