Math, asked by satyamwakchaure8, 1 month ago

3x+4y=8,X-2y =5
Cramer's rule​

Answers

Answered by mathdude500
3

Solve the following equations using Cramer's Rule :-

  • 3x + 4y = 8

  • x - 2y = 5

Solution :-

  • The matrix form of the above equations are

\rm :\longmapsto\:\: \begin{bmatrix} 3 &  4\\ 1 &  - 2\end{bmatrix}\begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{c}8\\5\end{array}\right]\end{gathered}

Here,

\rm :\longmapsto\:A = \: \begin{bmatrix} 3 &  4\\ 1 &  - 2\end{bmatrix}

\rm :\longmapsto\:\begin{gathered}\rm X=\left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf B=\left[\begin{array}{c}8\\5\end{array}\right]\end{gathered}

Now,

Consider,

\rm :\longmapsto\:D =  |A|  =  \: \begin{array}{|cc|}\sf 3 &\sf   4  \\ \sf 1 &\sf  - 2 \\\end{array} =  - 6 - 4 =  - 10

Now,

Consider,

\rm :\longmapsto\:D_1 =  \: \begin{array}{|cc|}\sf 8 &\sf   4  \\ \sf 5 &\sf  - 2 \\\end{array} =  - 16 - 20 =  - 36

Again,

Consider,

\rm :\longmapsto\:D_2 =  \: \begin{array}{|cc|}\sf 3 &\sf   8  \\ \sf 1 &\sf  5 \\\end{array} =  15 - 8 =  7

Therefore,

Now,

\rm :\longmapsto\:x = \dfrac{D_1}{D} = \dfrac{ - 36}{ - 10}   =  \dfrac{18}{5}

\rm :\longmapsto\:y = \dfrac{D_1}{D} = \dfrac{7}{ - 10}   =  -  \dfrac{7}{10}

Similar questions