Math, asked by dspattnaik, 1 year ago

3x+4y+z,=11, 12x+8y+z=63, 9x+6y+z=64​

Answers

Answered by sivaprasath
2

Answer:

x = 18

y = -27.5

z = 67

Step-by-step explanation:

Given :

To solve for x , y & z,

If,

3x+4y+z=11

12x+8y+z=63

9x+6y+z=64

Solution :

By using elimination method (finding the value of variables by eliminating other variables),.

3x+4y+z=11 ...(i)

12x+8y+z=63 ...(ii)

9x+6y+z=64 ...(iii)

By subtracting (i) from (iii) (eliminating z)

(9x+6y+z)-(3x+4y+z)=64-11

9x - 3x + 6y - 4y +z -z=53

6x + 2y=53 ...(iv)

______________________________

By subtracting (i) from (ii) (eliminating z)

(12x+8y+z) - (3x+4y+z)=63 - 11

12x- 3x + 8y - 4y +z-z=52

9x + 4y=52 ...(v)

______________________________

By subtracting 2 × (v) from 4 × (iv)

4 \times (6x + 2y) - 2 \times(9x + 4y)= 4 \times 53-2 \times 52

(24x + 8y) - (18x +8y)= 212-104

24x - 18x + 8y - 8y= 108

6x= 108

x= \frac{108}{6} = 18

x=18

_____________________________

By substituting value of x in (iv)

6x + 2y=53

6(18) + 2y=53

108 + 2y=53

2y=53-108

2y=-55

y=-\frac{55}{2} = -27.5

_____________________________

By substituting value of x & y in (i)

3x+4y+z=11

3(18)+4(-27.5)+z=11

54-110+z=11

-56+z=11

z=11+56

z=67

_____________________________

Similar questions