Math, asked by darkgirl4ns, 4 months ago

3x/5 + 2 < x+4 <= x/2 + 5 ,x € R
solve the following inequation and represent the soulution set on number line ​

Answers

Answered by user0888
33

Required answer

-10&lt;x\leq 2

To solve

Inequality \dfrac{3x}{5} &lt;x+4\leq \dfrac{x}{2} +5

Before we solve

A&lt;B&lt;C is equivalent to A&lt;B and B&lt;C. In other words, we can solve two inequality.

Solution

\dfrac{3x}{5} &lt;x+4 ...[I]

x+4\leq \dfrac{x}{2} +5 ...[II]

Solving [I]

\rightarrow \dfrac{3x}{5} &lt;x+4

\rightarrow 3x &lt;5(x+4)

\rightarrow 3x &lt;5x+20

\rightarrow -2x&lt;20

\rightarrow \boxed{x&gt;-10}

Solving [II]

\rightarrow x+4\leq \dfrac{x}{2} +5

\rightarrow 2(x+4)\leq 2(\dfrac{x}{2} +5)

\rightarrow 2x+8\leq x+10

\rightarrow \boxed{x\leq 2}

Attachments:
Answered by ItzVenomKingXx
16

\huge\bf{{\color{indigo}{A}}{\color{maroon}{ñ}}{\red{s}}{\color{red}{w}}{\color{orange}{ê}}{\color{gold}{Я࿐}}}

\dfrac{3x}{5} &lt; x+4 [I] \\ x+4\leq \dfrac{x}{2} +5x+4[II] \\  \sf Solving [I] \\ \rightarrow \dfrac{3x}{5}  \\ \rightarrow 3x &lt; 5(x+4) \\ \rightarrow 3x &lt; 5x+20\rightarrow -2x &lt; 20 \\\rightarrow \boxed{x &gt; -10} \\ \sf Solving [II] \\ \rightarrow x+4\leq \dfrac{x}{2} +5 \\ \rightarrow 2(x+4)\leq 2(\dfrac{x}{2} +5) \\ \rightarrow 2x+8\leq x+10 \\ \rightarrow \boxed{x\leq 2} \\

Similar questions