Math, asked by sammm55, 2 months ago

3x+5<6x-4 linear ineqation​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

↝ Given inequality is

\rm :\longmapsto\:3x + 5 &lt; 6x - 4

Subtracting 6x from both sides, we get

\rm :\longmapsto\:3x + 5 - 6x &lt; 6x - 4 - 6x

\rm :\longmapsto\:5 - 3x &lt;  - 4

Subtracting 5 from both sides, we get

\rm :\longmapsto\:5 - 3x - 5 &lt;  - 4 - 5

\rm :\longmapsto\: - 3x &lt;   - 9

Divided by- 3 both sides, we get

\rm :\longmapsto\:x &gt; 3

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{ \because \bf \:  - x  &lt;  - y \:  \implies \:  x  &gt;    y}}

\bf\implies \:x \:  \in \: (3, \:  \infty )

Additional Information :-

\red{ \boxed{ \bf \: x &gt; y \:  \implies \:  - x &lt;  - y}}

\red{ \boxed{ \bf \: x  &lt;  y \:  \implies \:  - x  &gt;   - y}}

\red{ \boxed{ \bf \:  - x  &lt;  y \:  \implies \:  x  &gt;   - y}}

\red{ \boxed{ \bf \: x &gt;  - y \:  \implies \:  - x &lt;  y}}

\red{ \boxed{ \bf \: x  \geqslant  y \:  \implies \:  - x  \leqslant   - y}}

\red{ \boxed{ \bf \: x  \leqslant  y \:  \implies \:  - x  \geqslant   - y}}

Similar questions