Math, asked by Cherry1168, 1 day ago

3x - 5y = 16 ; x - 3y = 8
Solve the above simultaneous equation.​

Answers

Answered by JimeetBoi
1

Answer:

The solution of the simultaneous linear equation is (3,1).

Step-by-step explanation:

Step 1 of 3

Obtain an expression for x  in the first linear equation.

From the given equation,  

x = 4 -y ……(1)

Step 2 of 3

Substitute equation (1) in the second linear equation to obtain value of y

2(4-y)-5y=1

8-7y=1

y=1

Step 3 of 3

Substitute value of y in equation (1), to obtain value of x

x=4-1

x=3

Answered by ItzDαrkHσrsє
3

\huge\bf\underline{\underline{\pink{A}\orange{N}\blue{S}\purple{W}\green{E}\red{R:-}}}

\sf{3x - 5y = 16 -  -  - ( \times 3)} \\  \\ \sf{x - 3y = 8 -  -  - ( \times 5)}

Solving equations simultaneously, we get,

\sf{9x - 15y = 48} \\  \\ \sf{5x - 15y = 40} \\  \\  -  -  -  -  -  -  -  -    \\  \\ \longrightarrow\sf{4x = 8} \\ \\  \longrightarrow\sf{x =  \frac{8}{4} } \\  \\ \longrightarrow\sf{x = 2}

Placing x = 2 in equation (1), we get,

\longrightarrow\sf{3(2) - 5y = 16} \\  \\ \longrightarrow\sf{6 - 5y = 16} \\  \\ \longrightarrow\sf{ - 5y = 16 - 6} \\  \\ \longrightarrow\sf{ - 5y = 10} \\  \\ \longrightarrow\sf{y =  \frac{10}{ - 5}}  \\  \\ \longrightarrow\sf{y =  - 2}

  • Thus, the values of (x,y) = (2,2)
Similar questions