Computer Science, asked by madhvshelke79, 4 months ago

3x+5y=26; x+5y=22 by using Cramer's rule method​

Answers

Answered by 704911xgg
10

Explanation:

BY CRAMER'S RULE...

in a more detailed way

MARK ME THE BRAINLIEST PLS : )

Attachments:
Answered by AmoliAcharya
12

Given: Here we have given two equations 3x+5y=26, x+5y=22

To find: Here we have to find the values of x and y by using cramer's rule

Solution:

Here we will compare $3x+5y=26$ and $x+5y=22$ with $ax+by=c$

So,

{{a}_{1}}=5,{{b}_{1}}=5,{{c}_{1}}=26$\\${{a}_{2}}=1,{{b}_{2}}=5,{{c}_{2}}=22$

Here we will find $D,{{D}_{x}},{{D}_{y}}$

$\begin{align}  & D=\left| \begin{matrix}   {{a}_{1}} & {{b}_{1}}  \\   {{a}_{2}} & {{b}_{2}}  \\\end{matrix} \right| \\  & =\left| \begin{matrix}   3 & 5  \\   1 & 5  \\\end{matrix} \right| \\  & =15-5 \\  & =10 \\ \end{align}$

& {{D}_{x}}=\left| \begin{matrix}   {{c}_{1}} & {{b}_{1}}  \\   {{c}_{2}} & {{b}_{2}}  \\\end{matrix} \right| \\  & =\left| \begin{matrix}   26 & 5  \\   22 & 5  \\\end{matrix} \right| \\  & =26\times 5-22\times 5 \\  & =130-110 \\  & =20 \\

& {{D}_{y}}=\left| \begin{matrix}   {{a}_{1}} & {{c}_{1}}  \\   {{a}_{2}} & {{c}_{2}}  \\\end{matrix} \right| \\  & =\left| \begin{matrix}   3 & 26  \\   1 & 22  \\\end{matrix} \right| \\  & =22\times 3-26 \\  & =66-26 \\  & =40 \\

Now we will find the values of x and y

$\begin{align}  & x=\frac{{{D}_{x}}}{D}=\frac{20}{10}=2 \\  & y=\frac{{{D}_{y}}}{D}=\frac{40}{10}=4 \\  & \therefore (x,y)=(2,4) \\ \end{align}$

Final answer:

Hence the answer is x=2 and y=4

Similar questions