3x - 5y - 4 = 0 and 9x = 2y + 7 by substitution method
Answers
Answer:
There are two equations provided here.
3x – 5y – 4 = 0 or 3x -5y = 4 ……. (1).
9x = 2y + 7 or 9x -2y = 7 ……(2).
Now only focusing on eq. numbered 1 and 2 …
3x – 5y = 4………(1)
9x – 2y = 7 ……(2)
Multiply eq. (1) by 3, we get….
3 (3x – 5y = 4) or 9x – 15y = 12…… (3).
Now we can easily subtract (2) and (3) to get…..
9x – 2y = 7
– 9x – 15y = 12.
– +13 y = -5
Or we get 13 y = -5 or y = -5/13.
Now we substitute the value of Y = -5/13 in equation (1) we get the value of x.
3x – 5(-5/13) = 4
3x +25/13 = 4
39x + 25 = 52
Or 39x = 52 – 25
39x = 27
Or x = 27/39 = 9 / 13
So x = 9/13 and y = -5/13.
Solution :-
3x - 5y - 4 = 0 → 3x - 5y = 4 (1)
9x = 2y + 7 → 9x - 2y = 7 (2)
From equation (1) :-
3x - 5y = 4
3x = 4 + 5y
x = (4 + 5y)/3
Substituting x = (4 + 5y)/3 in equation (2) :-
9x - 2y = 7
9 × (4 + 5y)/3 - 2y = 7
9 × (4 + 5y) - 6y = 21
36 + 45y - 6y = 21
39y = 21 - 36
y = -15/39
Substituting the value of y in equation (1) :-
3x - 5y = 4
3x - 5 × (-15/39) = 4
3x + 75/39 = 4
3x = 4 - 75/39
3x = 156 - 75 / 39
x = 81/39 × 1/3
x = 27/39
Proof :-
Put the value of x and y in any of the equation :-
In equation (1) :-
3x - 5y = 4
L.H.S. → 3 × 27/39 - 5 × -15/39
→ 81/39 + 75/39
→ 81 + 75 / 39
→ 156/39 = 4 = R.H.S. ✓✓
In equation (2) :-
9x - 2y = 7
L.H.S. → 9 × 27/39 - 2 × -15/39
→ 243/39 + 30/39
→ 243 + 30 / 39
→ 273/39 = 7 = R.H.S. ✓✓
Hence, proved.