Math, asked by udayanathnayak1977, 4 months ago

3x+5y=487,5x+3y=561 find the value of X and y​

Answers

Answered by prince5132
12

GIVEN :-

  • 3x + 5y = 487 , 5x + 3y = 561.

TO FIND :-

  • The value of x and y.

SOLUTION :-

⇒ 3x + 5y = 487 ....(1)

⇒ 5x + 3y = 561 ....(2)

Now from Equation 1 we have,

⇒ 3x + 5y = 487

⇒ 3x = 487 - 5y

⇒ x = (487 - 5y)/3

Now substitute the value of x in equation 2,

⇒ 5x + 3y = 561

⇒ 5 × (487 - 5y)/3 + 3y = 561

⇒ [ 5(487 - 5y) ]/3 + 3y = 561

⇒ (2435 - 25y)/3 + 3y = 561

⇒ (2435 - 25y + 9y)/3 = 561

⇒ (2435 - 16y)/3 = 561

⇒ 2435 - 16y = 561 × 3

⇒ 2435 - 16y = 1683

⇒ -16y = 1683 - 2435

⇒ -16y = -752

⇒ 16y = 752

⇒ y = 752/16

⇒ y = 47

Now substitute the value of y in equation 1.

⇒ 3x + 5y = 487

⇒ 3x + 5 × 47 = 487

⇒ 3x + 235 = 487

⇒ 3x = 486 - 235

⇒ 3x = 252

⇒ x = 252/3

x = 84

Hence the required value of x is 84 and the required value of y is 47.


spacelover123: Awesome :D
prince5132: Thanks ^_^
Answered by Anonymous
29

Answer:

Given:-

  • 3x + 5y = 487.....(1)
  • 5x + 3y = 561......(2)

Find:-

  • Find value of x and y

Solution:-

{ \mapsto{ \rm{3x \:  +  \: 5y \:  = 487}}}

{ \mapsto { \rm{3x \:   = 487 - 5y}}}

{ \mapsto{ \rm \large{x =  \frac{487 - 5y}{3} }}}

So, Now substitute the value of x in second equation

{ \to{ \rm{5x \:  + 3y = 561}}}

{ \to{ \rm{5( \frac{487 - 5y}{3} ) + 3y = 561}}}

{ \to{ \rm{ \frac{2435 - 25y}{3} + 3y = 561 }}}

{ \to{ \rm{ \frac{2435 - 25y + 9y}{3}  = 561}}}

{  \to{ \rm{2435 - 25y + 9y = 561 \times 3}}}

{  \to{ \rm{2435 - 16y = 1683}}}

{ \to{ \rm{ - 16y = 1683 - 2435}}}

{ \to{ \rm{16y = 752}}}

{  \to{ \rm{y =  \frac{752}{16} = 47 }}}

{ \boxed{ \therefore{ \pink{ \sf{y = 47 }}}}}

For finding the value of x let us substitute the value of y in equation (1)

{  \to{ \rm{3x + 5y = 487}}}

{ \to{ \rm{3x + 5(47) = 487 \:  }}}

{ \to{ \rm{3x + 235 = 487}}}

{ \to{ \rm{3x = 487 - 235}}}

{ \to{ \rm{3x = 252}}}

{ \to{  \rm{x =  \frac{252}{3}  = 84}}}

{ \boxed { \therefore{ \pink{ \sf{x = 84}}}}}

Therefore,

  • x = 84
  • y = 47
Similar questions