Math, asked by Rishitanawal1710, 1 month ago

3x-5y=6, 2x+3y=61 find the value of x and y by cross multiplication method

Answers

Answered by mathdude500
3

\large\underline{\bf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:3x - 5y = 6 -  - (1)

and

\rm :\longmapsto\:2x + 3y = 61 -  - (2)

Using Cross Multiplication method

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \begin{gathered} \begin{array}{|c|c|c|c|} \bf{2} & \bf{3}& \bf{1}& \bf{2} \\ \\ -5&6&3& -5\\ \\3&61&2&3\end{array}\end{gathered}

\rm :\longmapsto\:\dfrac{x}{ - 305 - 18}  = \dfrac{y}{12 - 183}  = \dfrac{ - 1}{9 + 10}

\rm :\longmapsto\:\dfrac{x}{ - 323}  = \dfrac{y}{ - 171}  = \dfrac{ - 1}{19}

\rm :\longmapsto\:\dfrac{x}{ - 323}  = \dfrac{y}{ - 171}  = \dfrac{1}{ - 19}

On multiply each term by - 19, we get

\rm :\longmapsto\:\dfrac{x}{17}  = \dfrac{y}{9}  = \dfrac{1}{1}

\bf\implies \:x = 17 \:  \:  \:  \: and \:  \:  \:  \: y = 9

Additional Information :-

There are 4 methods to solve this type of pair of linear equations.

  • 1. Method of Substitution

  • 2. Method of Eliminations

  • 3. Method of Cross Multiplication

  • 4. Graphical Method

Similar questions