Math, asked by geniuscientist4717, 11 months ago

3x to the power 2 minus 4root 3 plus 4 equal to 0 . Solve using middle term splitting methods

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x=\frac{2}{\sqrt{3}}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {3x}^{2}  - 4 \sqrt{3} x + 4 = 0 \\  \\   \red{\underline \bold{To \: Find :}} \\  \tt:  \implies x = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {3x}^{2}  - 4 \sqrt{3} x + 4 = 0 \\  \\  \tt:  \implies  {3x}^{2}  - 2 \sqrt{3} x -  2\sqrt{3}x + 4 = 0 \\  \\  \tt:   \implies  \sqrt{3} x( \sqrt{3} x - 2) - 2( \sqrt{3} x - 2) = 0 \\  \\  \tt:  \implies  (\sqrt{3} x - 2)( \sqrt{3}x - 2) = 0 \\  \\  \tt:  \implies  (\sqrt{3} x - 2)^{2}  = 0 \\  \\  \tt:  \implies  \sqrt{3} x - 2 = 0 \\  \\  \tt:  \implies  \sqrt{3} x = 2 \\  \\   \green{\tt:  \implies x =  \frac{2}{ \sqrt{3} } } \\  \\  \bold{Alternate \: method} \\  \tt:  \implies  {3x}^{2}  - 4\sqrt{3} x + 4 = 0 \\  \\  \tt:  \implies x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\  \tt:  \implies x =  \frac{ - ( - 4 \sqrt{3} ) \pm \sqrt{( - 4 \sqrt{3} )^{2} - 4 \times 3 \times 4 } }{2 \times 3}  \\  \\  \tt:  \implies x =  \frac{4 \sqrt{3} \pm \sqrt{16 \times 3 - 16 \times 3}  }{6}  \\  \\  \tt:  \implies x =  \frac{4  \sqrt{3} }{6}  \\  \\   \green{\tt:  \implies x =  \frac{2}{ \sqrt{3} } }

Answered by Anonymous
4

 \pink{ \huge \bold{Answer : }} \\   \green{\tt \therefore x =  \frac{2}{ \sqrt{3} } }

• From given question :

 \green{ \huge \bold{Step-by-step \: explanation}} \\   \\ \tt \to  {3x}^{2}  - 4 \sqrt{3}  x + 4 = 0 \\  \\  \text{solving \: by \: middle \: term \: spliting}  \\  \tt  \to  {3x}^{2}  - 2\sqrt{3} x - 2 \sqrt{3}  x+ 4 = 0 \\  \\  \tt \to  \sqrt{3}x( \sqrt{3} x - 2) - 2( \sqrt{3} x - 4) = 0 \\  \\  \tt \to   (\sqrt{3} x - 2)^{2}  = 0 \\  \\  \tt \to  \sqrt{3}   x - 2 = 0 \\  \\  \tt \to  \sqrt{3} x = 2 \\  \\   \green{\tt \to x =  \frac{2}{ \sqrt{3} } } \\  \\     \green{\tt{ \huge\therefore x =  \frac{2}{ \sqrt{3} } }}

Similar questions