Math, asked by sarthaksingh82, 11 months ago

3x-y=0 then 4x+y/x+7y equal to

Answers

Answered by mukulrajput2006
0

Answer:Let the present age of Aftab = x           And, present age of his daughter is represented as = y           Seven years ago,           Aftab’s age = x – 7           Age of Aftab’s daughter = y – 7           According to the question,           (x – 7) = 7 (y – 7 )           x – 7 = 7 y – 49           x – 7y = – 49 + 7           x – 7y = – 42 …           (i)           x = 7y – 42           Putting y = 5, 6 and 7, we get           x = 7 × 5 – 42 = 35 – 42 = – 7           x = 7 × 6 – 42 = 42 – 42 = 0           x = 7 × 7 – 42 = 49 – 42 = 7

           

          Three years from now,           Aftab’s age = x + 3           Age of Aftab’s daughter = y + 3           According to the question,           (x + 3) = 3 (y + 3)           x + 3 = 3y + 9           x – 3y = 9 – 3           x – 3y = 6 …           (ii)           x = 3y + 6           Putting, y = – 2, –1 and 0, we get           x = 3 × – 2 + 6 = – 6 + 6 =0           x = 3 × – 1 + 6 = – 3 + 6 = 3           x = 3 × 0 + 6 = 0 + 6 = 6

           

          Algebraic representation           From equation (i) and (ii)           x – 7y = – 42 …           (i)           x – 3y = 6 …                  (ii)           Graphical representation

2.       The coach of a cricket team buys 3 bats and 6 balls for Rs 3900. Later, she buys another bat and 3 more balls of the same kind for Rs 1300. Represent this situation algebraically and geometrically.

Ans. Let cost of one bat be = Rs x           And, cost of one ball be = Rs y           3 bats and 6 balls are for Rs 3900           Therefore, 3x + 6y = 3900 …           (i)           Dividing equation by 3, we get           x + 2y = 1300           Subtracting 2y from both side we get           x = 1300 – 2y           Putting y = –1300, 0 and 1300 we get           x = 1300 – 2 (–1300) = 1300 + 2600 = 3900           x = 1300 – 2(0) = 1300 – 0 = 1300           x = 1300 – 2(1300) = 1300 – 2600 = – 1300

           

          Given that she buys another bat and 2 more balls of the same kind for Rs 1300

          We get           x + 2y = 1300 …           (ii)           Subtracting 2y from both sides we get           x = 1300 – 2y           Putting y = – 1300, 0 and 1300 we get           x = 1300 – 2 (–1300) = 1300 + 2600 = 3900           x = 1300 – 2 (0) = 1300 – 0 = 1300           x = 1300 – 2(1300) = 1300 – 2600 = – 1300

           

          Algebraic representation           3x + 6y = 3900 …           (i)           x + 2y = 1300 …              (ii)           Graphical representation,

3.       The cost of 2 kg of apples and 1kg of grapes on a day was found to be Rs 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is Rs 300. Represent the situation algebraically and geometrically.

Ans. Let each kg of apples cost = Rs x           And, cost of each kg of grapes = Rs y           Given that the cost of 2 kg of apples and 1kg of grapes on a day was found to be = Rs 160           Therefore,           2 x + y = 160 …           (i)           2x = 160 – y           x = (160 – y)/2           Let y = 0 , 80 and 160, we get           x = (160 – ( 0 )/2 = 80           x = (160– 80 )/2 = 40           x = (160 – 2 × 80)/2 = 0

           

          Given that the cost of 4 kg of apples and 2 kg of grapes is Rs 300           Therefore,           4x + 2y = 300 …           (ii)           Dividing by 2 we get           2x + y = 150           Subtracting 2x from both the sides, we get           y = 150 – 2x           Putting x = 0 , 50 , 100 we get           y = 150 – 2 × 0 = 150           y = 150 – 2 × 50 = 50           y = 150 – 2 × (100) = – 50

           

          Algebraic representation,           2x + y = 160 …              (i)           4x + 2y = 300 …           (ii)           Graphical representation,

Exercise 3.2

1.       Form the pair of linear equations in the following problems, and find their solutions graphically.

          (i)   10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.

Ans.    Let the number of boys be = x              Let the number of girls be = y              Given that total number of students is 10              Therefore x + y = 10              Subtracting y from both the sides we get              x = 10 – y              Putting y = 0, 5, 10 we get              x = 10 – 0 = 10              x = 10 – 5 = 5              x = 10 – 10 = 0

       

             Given: the number of girls is 4 more than the number of boys              Therefore              y = x + 4              Putting x = – 4, 0, 4, and we get              y = – 4 + 4 = 0              y = 0 + 4 = 4              y = 4 + 4 = 8

       

             Graphical representation

             Therefore, number of boys = 3 and number of girls = 7.

     (ii)  5 pencils and 7 pens together cost Rs 50, whereas 7 pencils and 5 pens together cost Rs 46. Find the cost of one pencil and that of one pen.

Ans.    Let the cost of one pencil = Rs x              Let the cost of one pen = Rs y              5 pencils and 7 pens together cost = Rs 50,              Therefore              5x + 7y = 50              Subtracting 7y from both the sides we get              5x = 50 – 7y              Dividing by 5 we get              x = 10 – 7 y /5              Putting value of y = 5 , 10 and 15 we get              x = 10 – 7 × 5/5 = 10 – 7 = 3              x = 10 – 7 × 10/5 = 10 – 14 = – 4              x = 10 – 7 × 15/5 = 10 – 21 = – 11

       

             Given: 7 pencils and 5 pens together cost Rs 46              7x + 5y = 46              Subtracting 7x from both the sides we get              5y = 46 – 7x              Dividing by 5 we get              y = 46/5 – 7x/5              y = 9.2 – 1.4x              Putting x = 0 , 2 and 4 we get              y = 9.2 – 1.4 × 0 = 9.2 – 0 = 9.2              y = 9.2 – 1.4 (2) = 9.2 – 2.8 = 6.4              y = 9.2 – 1.4 (4) = 9.2 – 5.6 = 3.6

       

             Graphical representation

           

Answered by Cynefin
1

Answer:

Hey mate, Good morning ❤

☯️Here's ur answer...☆☆☆

Step-by-step explanation:

 \large{ \bf{ \pink{ \mid{ \underline{ \overline{ \purple{linear \: equations...}}}}}}}

 \large{3x - y = 0} ....(1)\\  \large{ =  > y = 3x} \\  \large{ \red{to \: find =  >  \frac{4x + y}{x + 7y} }} \\  \large{replacing \: y \: by \: 3x} \\  =   \large{\frac{4x + 3x}{x  + 7(3x)} } \\   = \large{ \frac{7x}{22x} } \\  =  \green{ \large{ \frac{7}{22} }} (\blue{answer...})

☁️Hope this helps you..

Pls mark as brainliest...Plss dear..

Join my journey by following me...

Similar questions