Math, asked by shreyadeshmukh834, 1 month ago

3x+y=7 ; 2x-y=5
substitution method
Solve correctly please​

Answers

Answered by Anonymous
22

Answer:

Given :-

➲ 3x + y = 7

➲ 2x - y = 5

To Find :-

❒ What is the value of x and y.

Method Used :-

❒ Substitution Method

Solution :-

Given Equation :

\leadsto \sf\bold{\purple{3x + y =\: 7\: ------\: (Equation\: No\: 1)}}\\

\leadsto \sf\bold{\purple{2x - y =\: 5\: ------\: (Equation\: No\: 2)}}\\

From the equation no 2 we get,

\implies \sf 3x + y =\: 7

\implies \sf 3x =\: 7 - y

\implies \sf\bold{\purple{x =\: \dfrac{7 - y}{3}\: ------\: (Equation\: No\: 3)}}

Now, by putting the equation no 3 in the equation no 2 we get,

\implies \sf 2x - y =\: 5

\implies \sf 2\bigg(\dfrac{7 - y}{3}\bigg) - y =\: 5

\implies \sf \dfrac{14 - 2y}{3} - y =\: 5

\implies \sf \dfrac{14 - 2y - 3y}{3} =\: 5

By doing cross multiplication we get,

\implies \sf 14 - 2y - 3y =\: 3 \times 5

\implies \sf 14 - 5y =\: 15

\implies \sf - 5y =\: 15 - 14

\implies \sf - 5y =\: 1

\implies \sf\bold{\red{y =\: - \dfrac{1}{5}}}

Again, by putting the value of y in the equation no 1 we get,

\implies \sf 3x + y =\: 7

\implies \sf 3x + \bigg(- \dfrac{1}{5}\bigg) =\: 7

\implies \sf 3x - \dfrac{1}{5} =\: 7

\implies \sf 3x =\: 7 + \dfrac{1}{5}

\implies \sf 3x =\: \dfrac{35 + 1}{5}

\implies \sf 3x =\: \dfrac{36}{5}

By doing cross multiplication we get,

\implies \sf 15x =\: 36

\implies \sf x =\: \dfrac{\cancel{36}}{\cancel{15}}

\implies \sf\bold{\red{x =\: \dfrac{12}{5}}}

{\small{\bold{\underline{\therefore\: The\: value\: of\: x\: is\: \dfrac{12}{5}\: and\: the\: value\: of\: y\: is\: - \dfrac{1}{5}\: .}}}}

Answered by TrustedAnswerer19
37

\pink{ \boxed{\boxed{\begin{array}{cc} \maltese  \bf \: given \\  \\  \rm \: 3x + y = 7 \:  \:  \:  \:  -  -  -  - (1) \\  \\  \rm \: 2x - y = 5  \:  \:  \:  \: -  -  -  - (2) \\  \\ \blue{ {{\begin{array}{cc} \maltese  \bf  \: we \: have \: to \: find \:  \\  \rm \to \: \: the \: value \: of \: x \:  \: and \:  \: y  \\ \rm by \: substitution \: method \end{array}}}}  \end{array}}}}

Now,

{ \boxed{\boxed{\begin{array}{cc} \maltese  \bf \: from \: eqn.(1)  \rm \implies \: \\  \\  \rm   \: y = 7 - 3x  \:  \:  \:  \:  \:  \:  \:  \: -  -  -  - (3) \\  \\  \sf \: put \: the \: value \: of \: y \: in \: eqn.(2)\rm \implies \: \\  \\  \rm \: 2x - (7 - 3x) = 5 \\  \\ \rm \implies \:2x - 7 + 3x = 5 \\  \\ \rm \implies \:5x = 5 + 7 = 12 \\  \\ \rm \implies \:x =  \frac{12}{5}  \\  \\   \pink{ \boxed{ \rm \therefore \:  \: x =  \frac{12}{5} }}\end{array}}}}

{ \boxed{\boxed{\begin{array}{cc} \maltese  \sf \: again \: put \: the \: value \: of \: x \: in \: eqn.(3) \\  \\  \rm \: y = 7 - 3 \times  \frac{12}{5}  \\  \\  = 7 -  \frac{36}{5}  \\  \\  =  \frac{35 - 36}{5}  \\  \\  =  \frac{ - 1}{5} \\  \\  \pink{ \boxed{\rm \therefore \: y =  -  \frac{1}{5}  }}\end{array}}}}

Final answer :

\orange{ \boxed{\boxed{\begin{array}{cc} \maltese  \bf \:  \: value \: of \:  \: x =  \frac{12}{5}  \\  \\  \maltese \bf \: value \: of \:  \:  y =  -  \frac{1}{5}  \end{array}}}}

Similar questions