Math, asked by ss2277870, 1 month ago

3x+y=8 and x+y=6
3x + y =8  andx + y = 6

Answers

Answered by piku35
0

Answer:

X=1 y=5

Step-by-step explanation:

3x+y=8

3x=8-y

x=8-y/3

x+y=6

(8-y/3)+y=6

8-y+3y/3=6

8+2y/3=6

8+2y=18

2y=18-8

2y=10

Y=10/2

Y=5

X=8-5/3

X=3/3

X=1

Answered by BrainlyTwinklingstar
4

Answer

\sf \dashrightarrow 3x + y = 8 \: \: --- (i)

\sf \dashrightarrow x + y = 6 \: \: --- (ii)

By first equation,

\sf \dashrightarrow 3x + y = 8

\sf \dashrightarrow 3x = 8 - y

\sf \dashrightarrow x = \dfrac{8 - y}{3}

Now, let's find the value of y by second equation.

\sf \dashrightarrow x + y = 6

\sf \dashrightarrow \dfrac{8 - y}{3} + y = 6

\sf \dashrightarrow \dfrac{8 - y + 3y}{3} = 6

\sf \dashrightarrow \dfrac{8 + 2y}{3} = 6

\sf \dashrightarrow 8 + 2y = 6 \times 3

\sf \dashrightarrow 8 + 2y = 18

\sf \dashrightarrow 2y = 18 - 8

\sf \dashrightarrow 2y = 10

\sf \dashrightarrow y = \dfrac{10}{2}

\sf \dashrightarrow y = 5

Now, let's find the value of x by first equation.

\sf \dashrightarrow 3x + y = 8

\sf \dashrightarrow 3x + 5 = 8

\sf \dashrightarrow 3x = 8 - 5

\sf \dashrightarrow 3x = 3

\sf \dashrightarrow x = \dfrac{3}{3}

\sf \dashrightarrow x = 1

Hence, the values of x and y are 1 and 5 respectively.

Similar questions