Math, asked by Ojas7722, 8 months ago

3x² - 2root 6x +2 splitting the middle term ​

Answers

Answered by Anonymous
2

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\pink{\mid{\fbox{\tt{ANSWER}}\mid}}

\bold{ {3x}^{2} - 2 \sqrt{6x} + 2 = 0}

\bold{ \sqrt{3x} ( \sqrt{3x} - \sqrt{2} ) - \sqrt{2} ( \sqrt{3x} - \sqrt{2} ) = 0}

\bold{( \sqrt{3x} - \sqrt{2} )( \sqrt{3x} - \sqrt{2}) = 0}

\bold{ \sqrt{3x} = \sqrt{2} }

\bold{ \sqrt{3x} =- \sqrt{2}}

\bold{x = \frac{ \sqrt{2} }{ \sqrt{3} }}

\bold{other \: root}

\bold{ \sqrt{3x} - \sqrt{2} = 0}

\bold{ \sqrt{3x} =- \sqrt{2}}

\bold{x = \frac{ \sqrt{2} }{ \sqrt{3} }}

━━━━━━━━━━━━━━━━━━━━━━━━━

{\huge{\underline{\small{\mathbb{\blue{HOPE\:HELP\:U\:BUDDY :)}}}}}}

Answered by llSecreTStarll
0

Solution :

Equation :

  • 3x² - 2√6x + 2

By Splitting the Middle Term :

›› 3x² - 2√6x + 2

›› 3x² - √6x - √6x + 2

›› 3x² -(√2 .√3)x - (√2 . √3)x + 2

›› √3x (√3x - √2) - √2 (√3x - √2)

›› (√3x - √2)(√3x - √2)

Roots of the given Equation are :

√3 x - √2 = 0

√3x = √2

  • x = √2/√3

OR

√3 x - √2 = 0

√3x = √2

  • x = √2/√3

Hence

  • Roots of the given Equation are √2/√3.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions