Math, asked by devrajkesarwani, 9 months ago

3x²-2x-1=0 solve by the the method of completion of square

Answers

Answered by sunilsrivastava129
2

Answer:

3x {}^{2}    - 2x - 1 = 0

3x { }^{2}  - (3- 1)x - 1 = 0

3x { }^{2}  - 3x   + x - 1 = 0

3x(x - 1) + (x - 1) = 0

(3x  + 1)(x - 1) = 0

3x  + 1 = 0  \\ x =   -  \frac{1}{3}

x - 1 = 0 \\ x = 1

Answered by Yugant1913
9

Answer:

3 {x}^{2}  + 2x - 1 = 0

⇒3 {x}^{2}   + 2x = 1

⇒ {x}^{2}  +  \frac{2}{3} x =  \frac{1}{3}

⇒ {x}^{2}  + 2. \frac{1}{3} x {( \frac{1}{3} )}^{2}  =  {( \frac{1}{3} )}^{2}  +  \frac{1}{3}

⇒ \:  \:  \:  \:  \:  {(x +  \frac{1}{3} )}^{2}  \:  =  \frac{1}{9}  +  \frac{1}{3}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1 + 3}{9}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {(x +  \frac{1}{3}) }^{2}  =  \frac{4}{9 }  {( \frac{2}{3} )}^{2}

On  \: taking \:  root,  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{1}{3}  = ± \frac{2}{3}

On \:  taking ( + ) \: sign,  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{2}{3}  -  \frac{1}{3}  =  \frac{2 - 1}{3}  =  \frac{1}{3}

On  \: taking \:  ( - ) \: sign,  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{1}{3}  =  \frac{ - 2}{3}

⇒ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{ - 2}{3}  -  \frac{1}{3}

⇒ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{ - 3}{3}  =  - 1

∴  Roots \:  of  \: equation  \: are \: x =  \frac{1}{3} ,  - 1.

Similar questions