Math, asked by shaikhshahzadi8320, 4 months ago

√3x²+ √2x - 2√3 =0 determine the nature of the root for the quadratic equation​

Answers

Answered by amansharma264
13

EXPLANATION.

Quadratic Equation,

⇒ F(x) = √3x² + √2x - 2√3 = 0.

As we know that,

⇒ D = b² - 4ac.

⇒ D = (√2)² - 4(√3)(-2√3).

⇒ D = (2) + 24.

⇒ D = 26.

⇒ D > 0.  Or b² - 4ac > 0,

Roots are real and unequal.

                                                                                         

MORE INFORMATION.

Conditions of common Roots,

Let quadratic equation are a₁x² + b₁x + c₁ = 0  and  a₂x² + b₂x + c₂ = 0.

(1) = If only one Root is Common.

x = b₁c₂ - b₂c₁/a₁b₂ - a₂b₁.

y = c₁a₂ - c₂a₁/a₁b₂ - a₂b₁.

(2) = If both roots are common

a₁/a₂ = b₁/b₂ = c₁/c₂.

Nature of the factors of the quadratic expression.

(1) = Roots are different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.


Anonymous: Niceee
Answered by AngelicSparkles
26

  \sf\huge { \underline {Given} }\:  \large {  is \:  a \:   quadratic \:  equation}   \\  \\  \sf⇢ \sqrt{3}  {x}^{2}  +  \sqrt{2} x - 2 \sqrt{3}  = 0

  \huge  \sf\underline{To \:  find }

The nature of the roots;

 \sf➞F(x)= \sqrt{3}  {x}^{2}  +  \sqrt{2} x - 2 \sqrt{3}  = 0

We know that:

 \sf➣ \: D =  {b}^{2}  - 4ac

 \sf\rightarrow \: D = ( \sqrt{2}  {)}^{2}  - 4( \sqrt{3} )( - 2 \sqrt{3} )

 \rightarrow \sf \: D = 2 + 24

 \implies \sf \: D = 26

 \therefore \sf D &gt; 0 \: or \:  {b}^{2}  - 4ac &gt; 0

So we have found the nature of the given roots i.e. real and unequal.

Similar questions