3x2 + 2x-21=0. 3y2-19y+28=0 qudartic equation
Answers
Answer:
(301-310): In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly- A) If x > y B) If x < y C) If x ≥ yD) If x ≤ yE) If x = y or relation cannot be established 301) I. 3x2+ 22x + 24 = 0, II. 3y2–8y –16 = 0 302) I. 5x2–18x –8 = 0, II. 2y2+ 11y + 12 = 0 303) I. x2–652 = 504, II. y = √1156304) I. 9/√x + 8/(√x +1) = 5,II. 12/√y –4/√y= 2 305) I. 3x2–6x –√3x + 2√3 = 0,II. 2y2–3y –2√2y + 3√2 = 0,306) I. x2–2x –√5x + 2√5 = 0II. y2–3y –√6y + 3√6 = 0307) I. 8x2+ 6x + 1 = 0, II. 5y2+ 8y –4 = 0 308) I. 4x2–23x + 30 = 0, II. 4y2–3y –45 = 0 309) I. 5x2–7x –6 = 0, II. 3y2–2y –8 = 0 310) I. 3x2+ 2x –21 = 0, II. 3y2–19y + 28 = 0 301) D 3x2+ 22 x + 24 = 0 3x2+ 18x + 4x + 24 = 0 Gives x = -4/3, -6 3y2–8y –16 = 0 3y2–12y + 4y –16 = 0 So y = -4/3, 4 Plot on number line -6…. -4/3……. 4