Math, asked by choudhary6909, 1 month ago

3x2 - 4 V3 x+4 = 0​ solve this if you can!!

only legends can solve this :)

All the best :)

Answers

Answered by hotcupid16
126

Given :-

  • 3x² - 4√3x + 4 = 0.

To find :-

  • The value of x.

Solution :-

 \implies \sf \: 3x ^{2} - 4 \sqrt{3} x + 4 = 0

\bf\blue{By~splitting~the~middle~term,} \\

\implies \sf \: 3x ^{2} - \bigg (2 \sqrt{3} + 2 \sqrt{3} \bigg )x + 4 = 0 \\

\implies \sf \: 3x ^{2} - 2 \sqrt{3}x - 2 \sqrt{3}x + 4 = 0 \\

\implies \sf \: \sqrt{3} x \bigg( \sqrt{3} x - 2 \bigg) - 2 \bigg( \sqrt{3} x - 2 \bigg) = 0 \\

\implies \sf \: \bigg( \sqrt{3} x - 2 \bigg) \bigg( \sqrt{3} x - 2 \bigg) = 0 \\

\implies \sf \: \bigg( \sqrt{3} x - 2 \bigg) ^{2} = 0 \\

\implies \sf \: \sqrt{3}x - 2 = \sqrt{0} \\

\implies \sf \: \sqrt{3} x - 2 = 0 \\

\implies \sf \: \sqrt{3} x = 2 \\

\implies \underline{ \boxed{ \sf \: x = \dfrac{2}{ \sqrt{3} } }}

The above quadratic equation has real and equal roots .

Answered by AbhinavRocks10
13

Step-by-step explanation:

✰TO SOLVE.

\begin{gathered} \\ \tt{3x {}^{2} - 4 \sqrt{3} x + 4 = 0}\end{gathered}

✰EXPLANATION.

\tt3 { x }^{ 2 } -4 \sqrt{ 3 } x+4 = 03x

\tt \: 3x^{2}+\left(-4\sqrt{3}\right)x+4=03x

\tt \: x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{\left(-4\sqrt{3}\right)^{2}-4\times 3\times 4}}{2\times 3}

➣\tt \: x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{48-4\times 3\times 4}}{2\times 3}

➣\tt \: x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{48-12\times 4}}{2\times 3}

➣\tt \: x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{48-48}}{2\times 3}

➣\tt \: x=-\frac{-4\sqrt{3}}{2\times 3}

➣\tt\: x=\frac{4\sqrt{3}}{2\times 3}

➣\tt \: x=\frac{4\sqrt{3}}{6}

➣\tt \: x=\frac{2\sqrt{3}}{3}

✵The Quadric Equation has real and equal roots.✵

✯ Hope it helps u ✯

Similar questions