3x2+5√5x-10=0 by quadratic formula solve it
Answers
Step-by-step explanation:
Solve 3x^2+ 5 \sqrt5 x - 10=03x
2
+5
5
x−10=0 by factorization method
Solution:
Given Equation :3x^2+ 5 \sqrt5 x - 10=03x
2
+5
5
x−10=0
We are supposed to solve by factorization method
\begin{gathered}\Rightarrow 3 {x}^{2} + 5 \sqrt{5} x - 10 = 0 \\ \Rightarrow 3 {x}^{2} + 3 \sqrt{5} x + 2 \sqrt{5} x - 10 = 0\\\Rightarrow 3x(x + \sqrt{5} ) - 2 \sqrt{5} (x + \sqrt{5} ) = 0 \\ \Rightarrow (x + \sqrt{5} )(3x - 2 \sqrt{5} ) = 0 \\\Rightarrow x + \sqrt{5} = 0 , 3x - 2 \sqrt{5} = 0 \\ \Rightarrow x = - \sqrt{5} , x = \frac{2 \sqrt{5} }{3}\end{gathered}
⇒3x
2
+5
5
x−10=0
⇒3x
2
+3
5
x+2
5
x−10=0
⇒3x(x+
5
)−2
5
(x+
5
)=0
⇒(x+
5
)(3x−2
5
)=0
⇒x+
5
=0,3x−2
5
=0
⇒x=−
5
,x=
3
2
5
I hope this is HELPFUL to you and make me as BRAINLEST and support me