Math, asked by balovesbalabat, 6 months ago

3x³+5x²+4x+1 can anyone answer this??​

Answers

Answered by SrijanShrivastava
0

let, f(x)= 3x³+5x²+4x+1=0

Then, Discriminant[f(x),x], Δ = –31 < 0

Thus, x₁ ∈ ℝ and x₂,₃ ∉ ℝ

f(x) ≡(x+\frac{5}{9})^{3} +(x+\frac{5}{9})\frac{11}{27} -\frac{47}{729} =0

Then, using the cubic formula, we get the three roots as :

x_{1}  =   \frac{ - 10 +  \sqrt[3]{188 + 36 \sqrt{93} } +  \sqrt[3]{188  -  36 \sqrt{93} }  }{18}

 x_{2, 3} =  \frac{ - 20  -  \sqrt[3]{188 + 36 \sqrt{93} } -  \sqrt[3]{188 - 36 \sqrt{93} }  +  i\sqrt{3} (± \sqrt[3]{  188 + 36 \sqrt{93}  } ∓    \sqrt[3]{188 - 36 \sqrt{93} }) }{36}

where, i = √(–1)

Similar questions