Math, asked by chakrabortyrishi5, 1 year ago

3xsin30+ytan^2 45=9 and ytan^2 60-xsec60=1 what is the value of x and y​

Attachments:

chakrabortyrishi5: wrong answer

Answers

Answered by Anonymous
7

Answer:

x =  \frac{ - 35}{8 }  \\

And

y =  \frac{13}{4}  \\  \\

Step-by-step explanation:

Given ,

3x \sin30 \degree + y  { \tan}^{2} 45 \degree = 9 \\  \\  \implies3x \times  \frac{1}{2}  + y \times  {1}^{2}  = 9 \\  \\  \implies \frac{3x}{2}  + y = 9 \\  \\  \implies \: \frac{3x + 2y}{2}  = 9 \\  \\  \implies3x + 2y = 18

→ 2(3x + 2y ) = 2×18

→ 6x + 4y = 36 ---------> (1)

Again we have :

y { \tan}^{2} 60 \degree - x \sec60 \degree = 1 \\  \\  \implies \: y ({ \sqrt{3}) }^{2}   - x(2) = 1 \\  \\  \implies3y - 2x = 1 \\

→ 3(3y - 2x ) = 3

→ 9y - 6x = 3 -----------> (2)

Adding equation (1) and (2) we have

6x + 4y + 9y - 6x = 36 + 3 \\  \\  \implies12y = 39 \\  \\  \implies \: y =  \frac{39}{12}  \\  \\  \implies \: y =  \frac{13}{4}

Now using the value of y in (2) :

9( \frac{13}{4} ) + 6x = 3 \\  \\   \implies3( \frac{13}{4} ) + 2x = 1 \\  \\  \implies2x = 1 -  \frac{39}{4}  \\  \\  \implies2x =  \frac{4 - 39}{4}  \\  \\  \implies2x =  \frac{ - 35}{4}  \\  \\  \implies \: x =  \frac{ - 35}{8}


chakrabortyrishi5: your answer is wrong
Similar questions