Math, asked by shahhet046, 1 year ago

√3xsquare-5x+2√3=0 using the general formulavand find the solution​

Answers

Answered by ItSdHrUvSiNgH
12

Step-by-step explanation:

\huge\blue{\underline{\underline{\bf Question:-}}}

 \sqrt{3} \:   {x}^{2}  - 5x + 2 \sqrt{3}  = 0

\huge\blue{\underline{\underline{\bf Answer:-}}}

 \leadsto  \sqrt{3} \:  {x}^{2}  - 5x + 2 \sqrt{3}  = 0 \\  \\ comparing \:  \: with \:  \: a {x}^{2}  + bx + c = 0 \\  \\ a =  \sqrt{3}  \\ b =  - 5 \\  c = 2  \sqrt{3}  \\  \\ using \:  \: quadratic \:  \: formula \implies \\  \\ \implies x =  \frac{ - b +  \: or \:  -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  \implies x =  \frac{5 +  \: or \:  -  \sqrt{25 - 4(2 \sqrt{3}  \times  \sqrt{3} )} }{2 \sqrt{3} }  \\  \\  \implies x =  \frac{5 +  \: or \:  -  \sqrt{25 - 24} }{2 \sqrt{3} }  \\  \\  \implies x =  \frac{5 +  \: or \:  - 1}{2 \sqrt{3} }  \\  \\  \implies x =  \frac{\cancel6}{\cancel2 \sqrt{3} }  \:  \: \:  \:  or \:  \:  \:  \: x =  \frac{\cancel4}{\cancel2 \sqrt{3} }  \\  \\  \huge \boxed{ \implies x = \sqrt{3}  \:  \:  \:  \:  \: or \:  \:  \:  \:  \: x =  \frac{2}{ \sqrt{3} }  }

Similar questions