Math, asked by anr17, 1 year ago

3xsquare +x -7= 4x, solve for x​

Answers

Answered by LovelyG
5

Answer:

\large{\underline{\boxed{\sf x =  \frac{3 +  \sqrt{93} }{6}   \: \: or \:  \: x =  \frac{3 -  \sqrt{93} }{6}}}}

Step-by-step explanation:

3x² + x - 7 = 4x

⇒ 3x² + x - 4x - 7 = 0

⇒ 3x² - 3x - 7 = 0

On comparing the given equation with the standard form of quadratic equation ax² + bx + c = 0,

a = 3, b = - 3, c = - 7

Discriminant = b² - 4ac

⇒ D = (-3)² - 4 * 3 * (-7)

⇒ D = 9 + 84

⇒ D = 93

 \tt x =  \frac{ - b \pm  \sqrt{d} }{2a}  \\  \\ \tt x =  \frac{ - ( - 3) \pm  \sqrt{93} }{2 \times 3}  \\  \\ \tt x =  \frac{3 \pm  \sqrt{93} }{6}  \\  \\ \bf \therefore x =  \frac{3 +  \sqrt{93} }{6}   \: \: or \:  \: x =  \frac{3 -  \sqrt{93} }{6}

Answered by BrainlyConqueror0901
86

Answer:

\huge{\red{\boxed{\boxed{\green{\sf{\therefore x=\frac{3+\sqrt{93}}{6},\frac{3-\sqrt{93}}{6}}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}}

3x^2+x-7=4x

To find:

value of x=?

3 {x}^{2}  + x - 7 = 4x \\ take \: all \: the \: variable \: in \: left \: side \\ 3 {x}^{2}  + x - 7 - 4x = 0 \\  = )3 {x}^{2}  - 3x - 7 = 0  \\  \\  {\boxed {method \:   ( quadratic \: formula)}}  \\ >  >  first \: find \: discriminant \\ \\d =  {b}^{2}  - 4ac \\  d=  { (- 3)}^{2}  - 4(3 \times  - 7) \\ d = 9 - 4( - 21) \\d  = 9 +8 4 \\ d = 93 \\  \\ x =  \frac{ - b +  - \sqrt{d} }{2a}  \\ x =  \frac{ - ( - 3) +   \sqrt{93}  }{2  \times 3}  \\\therefore x  = \frac{3 +  \sqrt{93} }{6} -  -  -  -  - 1st \: zeroes  \\  \\\therefore x =  \frac{ 3 -  \sqrt{93} }{6}  -  -  -  -  -  2nd \: zeroes

\huge{\red{\boxed{\boxed{\green{\sf{\therefore x=\frac{3+\sqrt{93}}{6},\frac{3-\sqrt{93}}{6}}}}}}}

_________________________________________

Similar questions