(3xy^2-y^3)dx-(2x^2y-xy^2)dy=0
Answers
Now,
(3xy² - y³) dx - (2x²y - xy²) dy = 0
⇒ dy/dx = (3xy² - y³)/(2x²y - xy²) ...(i)
Let us take,
y = vx
Then,
dy/dx = v + x (dv/dx)
From (i), we get
v + x (dv/dx) = (3x v²x² - v³x³)/(2x² vx - x v²x²)
⇒ v + x (dv/dx) = (3v² - v³)/(2v - v²)
⇒ x (dv/dx) = (3v - v²)/(2 - v) - v
⇒ x (dv/dx) = (3v - v² - 2v + v²)/(2 - v)
⇒ x (dv/dx) = v/(2 - v)
⇒ {(2 - v)/v} dv = (dx)/x
⇒ 2 (dv)/v - dv = (dx)/x
∴ integrating we get
2 ∫ (dv)/v - ∫ dv = ∫ (dx)/x
⇒ 2 logv - v = logx + c, where c is intergral constant
⇒ 2 log (y/x) - (y/x) = logx + c [ ∵ y = vx ]
⇒ 2 logy - 2 logx - (y/x) = logx + c
⇒ 2 logy - 3 logx = (y/x) + c,
which is the required primitive
#
Solve the differential equation
Explanation:
- given the differential equation:
----(a)
2. let then , ---(b)
3. substituting (b) in (a) we get,
[tex]->\frac{3x^3u^2-u^3x^3}{2x^3u-x^3u^2}=u+x\frac{du}{dx} \\ -> \frac{3x^3u^2-u^3x^3-2x^3u^2+x^3u^3}{2x^3u-x^3u^2}= \frac{du}{dx}\\ ->\frac{x^3u^2}{x^3u(2-u)}=\frac{du}{dx}\\ ->\frac{u}{2-u} =\frac{du}{dx}\\\\ -> dx=\frac{2-u}{u} du[/tex] ------(c)
4. integrating (c) on both sides we get,
[tex]->\int\ dx =\int\ {\frac{2-u}{u}} \, du\\ ->x=2ln(|u|)-u+c[/tex] (here 'c' is the integration constant)
5. now from (b) we have, putting this back in above equation
we get, (here 'c' is the integration constant)
[tex]->x=2ln(|\frac{y}{x} |)-\frac{y}{x}+c\\\\ ->2xln(|y|)-2xln(|x|)-y+cx-x^2=0\\[/tex] ------>ANSWER