Math, asked by kumararun18173, 9 months ago

3xy- 243xy^3 Factorise

Answers

Answered by adrija7
3

Step-by-step explanation:

3xy - 243x {y}^{3}  \\  = 3xy(1 - 81 {y}^{2}) \\  = 3xy[ {(1)}^{2} -  {(9y)}^{2} ] \\  = 3xy [(1 + 9y)(1 - 9y)] \\  = 3xy(1 + 9y)(1 - 9y)

Answered by yashkhandelwal230120
1

Answer:

3xy - 243xy³

= 3xy (1 - 81xy²)   (By taking common 3xy)

= 3xy (1 + 9xy)(1 - 9xy)  (Splitting the terms)

Checking

3xy (1 + 9xy)(1 - 9xy)

= 3xy {1² + 81xy² + 9xy - 9xy}

= 3xy (1 + 81xy² + 0)

= 3xy (1 + 81xy²)

= (3xy X 1) - (3xy X 81xy²)

= 3xy + (-243xy³)

= 3xy - 243xy³

Therefore your correct answer is 3xy(1 + 9xy)(1 - 9xy)

Hope this was helpful

Please mark me the brainliest.

Similar questions