Math, asked by shari77, 1 year ago

3y-3/y ÷ 7y-7/3(y to the power of 2)​

Attachments:

Answers

Answered by tanisha1258
19

Answer:

(hope it helps you )it is a easy method

Attachments:
Answered by swethassynergy
2

On simplification we get

\frac{9y^{3}-9y}{y^{2} -7} =\frac{3y-3}{y} ÷  \frac{7y-7}{3y^{2} }

Step-by-step explanation:

Given:

\frac{3y-3}{y} ÷  \frac{7y-7}{3y^{2} }

To find:

Simplify the term

Solution:

We need to simplify the fractional form into simple fractional terms.

\frac{3y-3}{y} gets divided by \frac{7y-7}{3y^{2} } , On simplifying the form we get the higher-order power terms.

\frac{3y-3}{y} ÷  \frac{7y-7}{3y^{2} }

 \frac{3y-3}{y}

           

  \frac{7y-7}{3y^{2} }

On splitting the numerator and thus taking lcm 3y² in the denominator we have,

 \frac{3y}{y} - \frac{3}{y}

               

 \frac{7y}{3y^{2} } - \frac{7}{3y^{2} }

Canceling the like term, therefore we get,

3 - \frac{3}{y}

           

\frac{7}{3y} - \frac{7}{3y^{2} }

\frac{3y-3}{y}

           

\frac{7y}{3y^{2} } -  \frac{7}{3y^{2} }

\frac{3y-3}{y}

         

\frac{7y-7}{3y^{2} }

Thus the fractional denominator term changed as an inverse term of the fraction and we get,

\frac{3y-3}{y} × \frac{3y^{2} }{7y-7}

Canceling y term we get

\frac{3y-3}{7y-7} ×3y}

We take \frac{7y+7}{7y+7} the term as the inverse of the denominator for simplification,

\frac{9y^{2} -9y}{7y-7} ×\frac{7y+7}{7y+7}

Applying formula (a+b)(a-b)=a²-b² we get,

\frac{63y^{3}-63y^{2} +63y^{2}-63y  }{7y^{2}-7^{2}  }

(-63y²+63y²=0) canceling the term we get,

\frac{63y^{3} -63y}{7y^{2}-49 }

Taking 7 as common we get,

\frac{9y^{3}-9y}{y^{2} -7}

Hence,

By simplification we get \frac{9y^{3}-9y}{y^{2} -7} .

Similar questions