Math, asked by thomasjohn210504, 19 days ago

4 00:06 Let A = { x:x E R. x < 1}; B = {x: XER, |x-1| > 1} and A U B = R - D, then the set D is​

Answers

Answered by mathdude500
27

\large\underline{\sf{Solution-}}

Given that,

\rm \: A =  \{x : x \:  \in \: R, \: x &lt; 1 \} \\

\rm\implies \:A = x \in \: ( -  \infty ,1)  -  -  - (1)\\

Also, given that

\rm \: B =  \{x : x \:  \in \: R, \:  |x - 1|   &gt;  1 \} \\

Now, Consider

\rm \:  |x - 1|  &gt; 1

We know,

\boxed{\tt{  |x - z| &gt; y \:  \: \rm\implies \:x &lt; z - y \:  \: or \:  \: x &gt; z + y \: }} \\

So, using this result, we get

\rm \: x - 1 &lt;  - 1 \:  \: or \:  \: x - 1 &gt; 1 \\

\rm \: x &lt;  - 1 + 1 \:  \: or \:  \: x  &gt; 1 + 1 \\

\rm \: x &lt;  0 \:  \: or \:  \: x  &gt; 2 \\

\rm\implies \:x \in \: ( -  \infty ,0) \:\cup \:(2,\infty)\\

\rm\implies \:B = x \in \: ( -  \infty ,0) \:\cup \:(2,\infty)  -  -  - (2)\\

From equation (1) and (2), we concluded that

\rm \: A\cup B =  \{x : x \:  \in \: R, \: x &lt; 0 or x &gt; 2 \} \\

\rm \: A \cup B =  R - [0, 2] \\

As it is given that

\rm \: A \cup B =  R - D \\

So, on comparing, we get

\rm \:  D\: = \{x : x \:  \in \: R, \: 0 \leq x \leq 2 \} \\ [/tex]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. Commutative Law

\rm \: A \cup B =  B \cup A \\

\rm \: A \cap B =  B \cap A \\

2. Associative Law

\rm \: (A \cup B) \cup C=  A \cup (B \cup C) \\

\rm \: (A \cap B) \cap C=  A \cap (B \cap C) \\

3. Distributive Law

\rm \: (A \cup B) \cap C=  (A \cap C) \cup (B \cap C) \\

\rm \: (A \cap B) \cup C=  (A \cup C) \cap (B \cup C) \\

Answered by Anonymous
25

 \sf \underline \red{Solution:−}

 \: \bullet\rm{ \: A={x:x∈R,x&lt;1}}

\bullet\rm{ \: B={x:x∈R,∣x−1∣&gt;1}}

  • Given A U B = R - D then D = ? for A ,

  \rm\rightarrow{ \: for \: A \:  = x &lt;  1 =  &gt; x  ∈( -  \infty   \: ,  \:  1)}

  \rightarrow\rm{for \: B = ∣x−1∣&gt;1}

So,

\longmapsto\rm{(x - 1)  }

\longmapsto\rm{x &gt; 1 \:  \cup \: x &lt; 1}

\longmapsto\rm{x \:  \in \: (2 \: , \:  \infty )  \:  \cup \: ( -  \infty  \: , \: 0)}

\longmapsto\rm{B=( -  \infty  \: , \: 0) \:  \cup \: (2 \: , \:  \infty )}

Now,

  • Given A U B = R - D

\rm\longmapsto{A \: \cup \: B = ( -  \infty  \: , \: 0)  \: \cup \: (2 \: , \:  \infty ) \:  \cup \: ( -  \infty  \: , \: 1)}

\longmapsto\rm{( -  \infty  \: , \: 1) \:  \cup \: (2 \: , \:  \infty )}

\longmapsto\rm{R - D = ( -  \infty  \: , \: 1) \:  \cup \: (2 \: , \:  \infty )}

\longmapsto\rm{R - ( -  \infty  \: , \: 1) \:  \cup \: (2 \: , \:  \infty ) = d}

\longmapsto\rm \fbox \red{D = 1,2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Information :

1. Commutative Law:-

\begin{gathered}\sf\: A \cup B = B \cup A \\ \end{gathered}

\begin{gathered}\sf \: A \cap B = B \cap A \\ \end{gathered}

2.Associative Law :-

\begin{gathered}\sf \: (A \cap B) \cap C= A \cap (B \cap C) \\ \end{gathered}

 \sf{(A∩B)∩C=A∩(B∩C)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

@Shivam

#BeBrainly

Similar questions