Math, asked by guptanilesh232, 1 month ago

4( 1+√2)/1-√2 is it rational or irrational please gI've me step by step solution​​

Answers

Answered by ManishShah98
2

\small\red{\boxed{Question =  \frac{4(1 +  \sqrt{2} )}{1 -  \sqrt{2} }   }.} \\  \\ \small\orange{\underline{ \underline{solution}:  - }} \\  \\  \color{blue} =  \frac{4(1 +  \sqrt{2}) }{1 -  \sqrt{2} }  \\  \\ \color{blue} =   \frac{4 + 4 \sqrt{2} \times 1 +  \sqrt{2}  }{1 -  \sqrt{2}  \times 1 +  \sqrt{2} }  \\  \\ \color{blue}  =  \frac{4 + 4 \sqrt{2}  + 4 \sqrt{2} + 8 }{ {1}^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\ \color{blue} =   \frac{12 + 8 \sqrt{2} }{1 - 2}  \\  \\ \color{blue} =   \frac{(12 + 8 \sqrt{2}) \times  - 1 }{ - 1 \times  - 1}  \\  \\ \color{blue} =    \frac{ - 12 - 8 \sqrt{2} }{1}  \\  \\ \color{green} =    - 12 - 8 \sqrt{2}  \:  \:  \: this  \: is \: a \: rational \: . \\  \\  \\ \small\orange{\underline{ \underline{Hope \: It's \: Help \: You  }:  - }} \\  \\ \small\red{\boxed{\boxed{it's ᭄亗 乄 MꫝղᎥនh 乄 亗✯❤࿐} }}

Answered by llSᴡᴇᴇᴛHᴏɴᴇʏll
5

\huge \fbox \blue{a} \fbox \purple{n} \fbox \green{s} \fbox \red{w} \fbox \pink{e} \fbox \orange{r}

 \\

\huge\tt\: \red{ = \:  \frac{4(1 \:  + \: \sqrt{2})}{1 \:  -   \: \sqrt{2} } }

\huge\tt \red{ =  \:  \frac{4 \:  +  \: 4 \sqrt{2} \:  \times \:  1  \: +  \:  \sqrt{2} } {1 \:  -  \sqrt{2}  \: \times \:  1 \:  +   \: \sqrt{2}}}

\huge\tt\red{\frac{ =  \: 4 \:  +  \: 4  \:  \sqrt{2} \:  + \:  4  \sqrt{2}  \: + \:  8}{{1}^{2}  \: -  \: ( \sqrt{2})^{2} }}

\huge\tt\red{\frac{ =  \: 12  \: +  \: 8 \sqrt{2} }{1  \: - \:  2}}

\huge\tt\red{= \:  \frac{(12  \: + \:  8 \sqrt{2)}  \: \times \:   - 1 }{ - 1 \:  \times \:   - 1}}

\huge\tt\red{= \: \frac{12 \:  - \: 8 \sqrt{2} }{1}}

\huge\tt\red{ \therefore - 12 \:  - 8 \sqrt{2} }

Similar questions