Math, asked by Sushilking, 3 months ago

4.
1
= cosec 0 + cot O.
cosec - coto
Solution:​

Attachments:

Answers

Answered by Ladylaurel
7

Given to solve :-

\sf{\dfrac{1}{cosec \: \theta - cot \: \theta} = cosec \: \theta + cot \: \theta}

Answer :-

We have,

L.H.S = \sf{\dfrac{1}{cosec \: \theta - cot \: \theta}}

R.H.S = \sf{cosec \: \theta + cot \: \theta}

Therefore,

 \\ \sf{\longrightarrow \: \dfrac{1}{cosec \: \theta - cot \: \theta}}

By multiplying both the numerator and denominator by (cosec θ + cot θ ), we get,

 \\ \sf{\longrightarrow \: \dfrac{1}{cosec \: \theta - cot \: \theta} \times \dfrac{cosec \: \theta + cot \: \theta}{cosec \: \theta + cot \: \theta}}

By multiplying, we get,

 \\ \sf{\longrightarrow \: \dfrac{1(cosec \: \theta + cot \: \theta)}{(cosec \: \theta - cot \: \theta)(cosec \: \theta + cot \: \theta)}}

By using (a - b)(a + b) = (a² - b²), We get,

 \\ \sf{\longrightarrow \: \dfrac{cosec \: \theta + cot \: \theta}{{(cosec \: \theta - cot \: \theta)}^{2}}}

By using the identity (cosec θ - cot θ )² = 1, We get,

 \\ \sf{\longrightarrow \: \dfrac{cosec \: \theta + cot \: \theta}{1}}

 \\ \sf{\longrightarrow \: cosec \: \theta + cot \: \theta = R.H.S}

Hence, Proved!

⠀⠀⠀⠀⠀ ⠀⠀__________________

THINGS TO REMEMBER :-

  • (cosec θ + cot θ)² = 1
  • (a - b)(a + b) = (a² - b²).
Similar questions